# Facing the computing challenge of HL-LHC

José M. Hernández CIEMAT, Madrid







# Worldwide LHC Computing Grid

Distributed high-throughput computing infrastructure to store, process & analyze data produced by LHC experiments

- 167 sites, 42 countries, 63 MoU's
- 800k cores
- ~500 PB disk storage
- ~750 PB tape storage
- Optical private network (LHCOPN) and overlay over NRENs (LHCONE) with 10/100 Gbps links

#### Spanish contribution:

- ~5% resources (MoU)
- 1 Tier-1 center (PIC CIEMAT/IFAE)
- 6 Tier-2 centers (1 en CIEMAT)



#### **LHC / HL-LHC Plan**





- Run 3 (2021-2023): **~2x more data**. **Evolutionary** changes in computing models
- Run 4 (HL/LHC, 2026+): ~20-30x more data. Revolutionary changes required

### Run 3 resource needs evolution



2016

2015

2017



- 2010-2018 pledges
- 2021 assume 1.5 x 2018

Overall, Run-3 resource needs look compatible with flat spending in the next years

# The HL-LHC computing challenge: ATLAS



- ~4-5x gap between "flat budget 20% annual increase" and resource requirements for HL-LHC
- Intense R&D to reduce data and compute resource requirements

# The HL-LHC computing challenge: CMS





### Cost evolution





- Unclear hardware cost evolution
  - Significant impact
- Current price reduction assumption:
  - o 10% CPU, 15% disk, 20 tape



# **R&D for HL-LHC computing**

# Towards a more efficient computing infrastructure

#### The data lake model

- Reduce operational cost: deploy fewer (larger & federated) storage services
  - o Global redundancy, economy of scale
- Introduce caching layer to hide latency of remote data streaming
  - High bandwidth content delivery network
- Reduce hardware cost: introduce the concept of QoS (Quality of Service)
  - Data tiering to optimize access

#### Current storage model

- Lots of sites (150+) with managed storage
- Mostly local data access
- High level of data replication



## Data and Compute Infrastructures



# Use additional compute resources

# Exploiting supercomputers for LHC

- Lot of funding worldwide in supercomputer (HPC) facilities
  - Defined roadmap towards ExaFlop machines
    - e.g. EuroHPC B€ funding: 2 ~200 PFlop machines by 2021, 2 exaFlop by 2024
  - Funding agencies pushing us to use those resources
- Data intensive computing with HPC facilities is a challenge
  - Limited/no network connectivity in compute nodes
  - Limited storage for caching input/output event data files
- Our applications are not really suited for HPC
  - No large parallelization (no use of fast node interconnects)
  - No substantial use of accelerators (GPU, FPGA)
- Substantial integration work to make HPC work for HTC
  - No one-fit-all solution: each facility is different
  - Little effort available in the LHC experiments
- Not suitable resource allocation model
  - We would need a guaranteed share of resources rather than apply for allocations

# HPC usage in LHC

- ATLAS and CMS are using HPC centers in the US and Europe
  - NERSC (US), CINECA (IT), BSC (ES), Piz Daint (CH)
- Mostly for event generation and (geant4) simulation (CPU-bound)
  - ~20% of the ATLAS simulation, ~1% CMS simulation
- The prominence of GPUs is increasing in future HPC machines
  - Need to adapt workflows to these highly parallel architectures
- Important to influence the architecture of future HPC machines
  - Support for high throughput computing



# Barcelona supercomputer center (BSC)

- #25 in Top500
  - MareNostrum 4, 153k cores, 10 PFlops
- Bidding for EuroHPC pre-exascale machine
  - ~200 PFlops, 250 M€, 10 MW power
- ATLAS, through allocations granted to IFAE and IFIC has successfully used BSC
  - CMS, through a project led by CIEMAT, is adapting the workload management system
- Agreement being worked out with BSC to use resources for LHC simulation at large scale
  - Technical and policy questions under discussion
    - Accessibility, edge services, allocations





### Use of commercial Cloud resources

- CMS and ATLAS have run large scale tests using Cloud compute nodes
  - o Amazon AWS, Google Cloud, Microsoft Azure
  - ~50k cores running concurrently for few days
- Cost not yet competitive
  - Need to use spot market instances, much cheaper than on-demand resources
  - High storage and networking costs
- Currently essentially no commercial cloud use for LHC computing
- Potential future opportunities
  - E.g. the European Open Science Cloud (EOSC)
    - A EU model for use of cloud computing in the private and public sector



# Use of compute accelerator cards

- Dramatic development of massively parallel architectures
  - Graphics Processing Units (GPU)
  - Field Programmable Gate Arrays (FPGA)
- Potential large speed improvement from hardware accelerated coprocessors
  - Large performance/€ and smaller electric consumption/performance

#### Difficult to use

- Need to re-engineer our codes to a massively parallel environment
- Data ingestion can be a limiting factor
- Very suitable for certain applications
  - E.g., excel at training deep neural networks
- New HPC machines will bring a lot of these cards





# Software optimization

#### The solution could come from the software

#### Recent initiatives

- HEP Software Foundation (coordinate software R&D for LHC)
- o Institute for Research & Innovation in Software for HEP (IRIS-HEP); 25M\$, 5 years
- Proposal a EU scientific software institute
- COMCHA forum in Spain

#### Exploit new hardware architectures

- High level parallelism, new instruction sets, non x86 processors
- Support in software frameworks for heterogeneous hardware
  - Support for multi-threading, vectorisation, CPU/GPU orchestration

#### Innovative algorithms

- Machine/deep learning
- Recast physics problem as machine learning problem vs re-rewrite physics algorithms for new hardware

## ATLAS CPU needs reduction by using fastsim/fastreco

Faster physics algorithms: exploit more broadly fast simulation & reconstruction



# Less data

#### Reduce amount of data

- Less data → less storage, less processing and analysis compute needs
  - Reduce **trigger** output rate (HL-LHC planned 7.5 kHz → ?)
  - Reduce data formats
- Impact of physics?
- NanoAOD format in CMS
  - ~1 kB/event
  - Goal: to be used by 50% of physics analyses
  - ~Halves CMS storage needs for HL-LHC





| Data Tier    | Size (kB)          |
|--------------|--------------------|
| RAW          | 1000               |
| GEN          | < 50               |
| SIM          | 1000               |
| DIGI         | 3000               |
| RECO(SIM)    | 3000               |
| AOD(SIM)     | 400 (8x reduction) |
| MINIAOD(SIM) | 50 (8x reduction)  |
| NANOAOD(SIM) | 1 (50x reduction)  |

Analysis data formats

# Summary and outlook

- HL-LHC poses a big computing challenge
  - Resources unaffordable with current computing models and flat funding
- Problem not solved yet but well underway
- The solution will most probably be a combination of new software and hardware technologies
  - Machine learning, accelerator cards, supercomputers, ...
- Intense ongoing R&D program
  - WLCG TDR by 2022
- Still 7 years to go. A lot in terms of technology evolution