

### Introduction

ttH production provides a direct measurement of the Yukawa coupling of the top to the Higgs

- In the SM, the Higgs boson *can couple to fermions* with a coupling strength proportional to the fermion mass
- ☐ Top quark: heaviest elementary particle → strongest coupling to SM Higgs
- ☐ Decay into top quarks is kinematically *impossible*
- Direct measurement of **top-Higgs coupling** at the LHC is done through the production of a Higgs boson and a top quark-antiquark pair or a single top





### ttH and tH cross sections:

 $\sigma_{ttH} \sim$  0.5 pb (13 TeV): best sensitivity to  $|y_t|$   $\sigma_{tH} \sim$  0.1 pb (13 TeV): sensitive to sign of  $y_t$ 

### ttH Observation

- ☐ The observation of associated production of a Higgs boson with a top quark pair (ttH) has been reported by the ATLAS and CMS collaborations
- Analyses of final states from different Higgs boson decay modes have been combined
- The observed ttH production rate is in agreement with the SM prediction



CMS: HIG-17-035, Phys. Rev. Lett. 120 (2018) 231801, ATLAS: HIGG-2018-13, Phys. Lett. B 784 (2018) 173 3

# ttH Multileptons



Presenting results from HIG-18-019: <a href="http://cds.cern.ch/record/2649199/files/HIG-18-019-pas.pdf">http://cds.cern.ch/record/2649199/files/HIG-18-019-pas.pdf</a>
The Oviedo group contributed in the **electron** and **muon** channels

# **Data Samples and Monte Carlo Simulation**

- □ Dataset from **2017 @ 13 TeV**, corresponding to an integrated luminosity of **41.5 fb**<sup>-1</sup>
  - Combination of single, double, and triple lepton triggers, complemented by triggers based on the presence of a lepton and a hadronic tau  $(\tau_h)$
- Signal and background samples are produced by **Monte Carlo (MC) simulation**, and are used to estimate event yields and to train algorithms for signal extraction

List of event generators used to produce samples for signal and background processes.

| Generator         | Processes                                                                                    |  |  |
|-------------------|----------------------------------------------------------------------------------------------|--|--|
|                   | $t\bar{t}H$ , $t\bar{t}W$ , $t\bar{t}Z$ , $t\bar{t} + \gamma + jets$ , $t + \gamma + jets$ , |  |  |
| MADGRAPH5_aMC@NLO | tīWW, WZ, WWW, WWZ, WZZ, ZZZ,                                                                |  |  |
|                   | Single top quark $+Z$ , $tt\overline{tt}$ , $Z/\gamma^* \rightarrow \ell\ell$ , $W+jets$     |  |  |
| POWHEG            | ttH, WW, ZZ, tt+jets, single top quark                                                       |  |  |
| PYTHIA            | Minimum bias events                                                                          |  |  |

### **Event Selection**

- Events grouped in **7 exclusive categories** based on the multiplicity of reconstructed candidates passing the *tight selection* criteria **based on lepton MVA (BDTs)**
- All events are required to contain at least **2 jets**:  $p_{\tau} > 25$  GeV and  $|\eta| < 2.4$
- □ At least 1 of these jets is required to be b-tagged



# **Background Estimation**

Main background contributions: ttW/Z and fake/non-prompt leptons (tt + jets)

- ☐ Top quark pair production associated with a vector boson (ttW, ttZ)
  - ☐ Similar kinematics to the signal
  - ☐ Estimated with Monte Carlo simulations
  - ☐ Control regions are used in the fit to constrain these processes

### Best fit for ttZ and ttW

$$\mu_{ttZ} = 1.69^{+0.39}_{-0.33} (1.00^{+0.24}_{-0.21})$$

$$\mu_{ttW} = 1.42^{+0.34}_{-0.33} \, (1.0^{+0.27}_{-0.24})$$

- **Processes** with leptons not coming from W, Z or τ decays
  - ☐ Dedicated MVA for the identification of prompt leptons
  - ☐ Data-driven estimation for this background

### **Event Yields**

### Observed data events in agreement with the SM expectation

| Category         | $2\ell ss$       | $3\ell$          | $4\ell$         | $1\ell + 2\tau_{\rm h}$ | $2\ell + 2\tau_{\rm h}$ | $3\ell + 1\tau_h$ | $2\ell ss + 1\tau_h$ |
|------------------|------------------|------------------|-----------------|-------------------------|-------------------------|-------------------|----------------------|
| ttH              | $43.0 \pm 7.1$   | $18.8\pm4.8$     | $0.7 \pm 0.3$   | $6.6 \pm 3.6$           | $0.9 \pm 0.5$           | $1.0\pm0.4$       | $5.1 \pm 2.1$        |
| ttW + ttWW       | $218.5 \pm 13.7$ | $51.0 \pm 5.3$   | $0.13 \pm 0.03$ | $1.1 \pm 0.3$           | < 0.05                  | $0.5 \pm 0.1$     | $13.1 \pm 2.4$       |
| tH               | $2.4 \pm 0.1$    | $0.9 \pm 0.1$    | < 0.05          | $0.3 \pm 0.1$           | < 0.05                  | < 0.05            | $0.5 \pm 0.0$        |
| WZ + ZZ          | < 0.05           | $12.0 \pm 1.7$   | $0.15 \pm 0.10$ | $1.5 \pm 0.8$           | < 0.05                  | $0.1 \pm 0.0$     | $2.8 \pm 2.0$        |
| $t t Z/\gamma^*$ | $138.2 \pm 7.6$  | $74.1 \pm 6.3$   | $3.9 \pm 0.6$   | $11.6 \pm 2.6$          | $1.6 \pm 0.5$           | $4.5 \pm 0.7$     | $15.4 \pm 2.4$       |
| Misidentified    | $132.1 \pm 10.0$ | $26.8\pm4.0$     | < 0.05          | $299.6 \pm 19.1$        | $5.3 \pm 2.2$           | $0.3 \pm 0.3$     | $5.3 \pm 2.2$        |
| Conversions      | $11.6 \pm 3.0$   | $6.6 \pm 1.3$    | < 0.05          | $0.3 \pm 0.1$           | < 0.05                  | < 0.05            | < 0.05               |
| Signal flip      | $22.8 \pm 2.3$   | < 0.05           | < 0.05          | < 0.05                  | < 0.05                  | < 0.05            | < 0.05               |
| Other            | $26.7 \pm 3.9$   | $9.7 \pm 2.2$    | < 0.05          | $1.2\pm0.5$             | $0.06 \pm 0.04$         | $0.3 \pm 0.2$     | $3.2 \pm 1.1$        |
| SM expectation   | $595.3 \pm 20.6$ | $200.0 \pm 10.8$ | $5.0 \pm 0.7$   | $322.0 \pm 19.6$        | $7.9 \pm 2.3$           | $6.7 \pm 0.9$     | $45.3 \pm 5.1$       |
| Observed data    | 614              | 195              | 6               | 324                     | 7                       | 4                 | 53                   |

S/B

80.0

0.10

0.16

0.05

0.13

0.18

0.13

- The **sensitivity** of the analysis is **driven** by the 2/ss, 3/,  $1/+2\tau_h$  and  $2/ss+1\tau_h$  categories
- The 2/+2τ<sub>h</sub>, 3/+1τ<sub>h</sub>, and 4/ categories are **statistically limited**, may change using the **full** Run2 dataset (~150 fb<sup>-1</sup>)

## **Event Yields**



## Signal Extraction and Dominant Uncertainties

- □ Signal Region discriminants based on Boosted Decision Trees outputs
  - Optimize the separation between the **ttH** signal and the **main backgrounds** in *each category*
- Binned maximum likelihood fit to the distribution of a discriminant (optimized for each category) with the exception of the 4l where a event counting is performed
- The production rates of the **ttW(W)**, **ttZ**, **and diboson** backgrounds are simultaneously fitted with the ttH signal, and constrained from dedicated **control regions**

### Dominant systematic uncertainties and their impact on the fitted ttH rate

| Source                              | Uncertainty [%] | $\Delta \mu / \mu  [\%]  (2017)$ | $\Delta\mu/\mu$ [%] (Comb.) | Correlations  |
|-------------------------------------|-----------------|----------------------------------|-----------------------------|---------------|
| Theoretical sources                 | ≈ 8             | 8                                | 9                           | Correlated    |
| e, $\mu$ selection efficiency       | 3–5             | 4                                | 3                           | Correlated    |
| $\tau_{\rm h}$ selection efficiency | 5               | 3                                | 5                           | Correlated    |
| $\tau_{\rm h}$ energy calibration   | 1.2             | 1                                | 2                           | Correlated    |
| b tagging efficiency                | 2–15            | 10                               | 5                           | Correlated    |
| Jet energy calibration              | 2–15            | 3                                | 3                           | Correlated    |
| Fake background yield               | ≈ 30–50         | 17                               | 9                           | Un-correlated |

### **Discriminants**



## Results



| Signal Strength $\pm 1\sigma$ |                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measured                      | Expected                                                                                                                                                                                                                                                                                                                           |
| $1.40^{+1.24}_{-1.14}$        | $1.00^{+1.14}_{-0.93}$                                                                                                                                                                                                                                                                                                             |
| $0.87^{+0.62}_{-0.55}$        | $1.00^{+0.53}_{-0.49}$                                                                                                                                                                                                                                                                                                             |
| $1.13^{+1.03}_{-1.11}$        | $1.00^{+0.93}_{-0.80}$                                                                                                                                                                                                                                                                                                             |
| $0.00^{+1.29}_{-0.00}\ast$    | $1.00^{+2.63}_{-1.56}$ *                                                                                                                                                                                                                                                                                                           |
| $0.29^{+0.82}_{-0.62}$        | $1.00^{+0.59}_{-0.52}$                                                                                                                                                                                                                                                                                                             |
| $-0.96^{+1.96}_{-1.33}$       | $1.00^{+1.91}_{-1.37}$                                                                                                                                                                                                                                                                                                             |
| $0.99^{+3.31}_{-1.69}$        | $1.00^{+2.41}_{-1.72}$                                                                                                                                                                                                                                                                                                             |
| $0.75^{+0.46}_{-0.43}$        | $1.00^{+0.39}_{-0.35}$                                                                                                                                                                                                                                                                                                             |
| $0.96^{+0.34}_{-0.31}$        | $1.00^{+0.30}_{-0.27}$                                                                                                                                                                                                                                                                                                             |
|                               | Measured  1.40 <sup>+1.24</sup> <sub>-1.14</sub> 0.87 <sup>+0.62</sup> <sub>-0.55</sub> 1.13 <sup>+1.03</sup> <sub>-1.11</sub> 0.00 <sup>+1.29</sup> <sub>-0.00</sub> 0.29 <sup>+0.82</sup> <sub>-0.62</sub> -0.96 <sup>+1.96</sup> <sub>-1.33</sub> 0.99 <sup>+3.31</sup> <sub>-1.69</sub> 0.75 <sup>+0.46</sup> <sub>-0.43</sub> |

Observed (expected) significance of 3.2  $\sigma$  (4.0  $\sigma$ )

Best fit μ(t̄tH)

Observed (expected) significance of 1.7  $\sigma$  (2.9  $\sigma$ )

**Evidence** of **ttH** reached in **Multileptons** 

# **Prospects**

**HL-LHC Projections:** Higgs Physics at the HL-LHC and HE-LHC

- □ ATLAS and CMS projections for physics analyses at HL-LHC
  - □  $\Delta \sigma_{ttH}$  = 4.3% (S2) projected for ATLAS+CMS at 3000 fb −1 per experim.
    - □ S2: assumes lumi-scaling of some syst, and 1/2 theory uncertainties
  - $\Box \Delta \sigma_{ttH}$  = 4.3% = 1.3 (stat) + 1.8 (experimental) + 3.7 (theory) %



Results will be limited by the fakes uncertainty



# **Summary**

- The contributions of the **Oviedo group** to the CMS measurement of the production of a Higgs boson in association with a top quark pair in the **Multilepton channel** have been presented
- All results are consistent with the SM expectation, combining 2016 and 2017 the observed (expected) significance is  $3.2 \sigma (4.0 \sigma)$
- Big amount of work is on-going to get the final results of the full Run2 dataset, 150 fb<sup>-1</sup>
- Many more to come with the Run3 data...

#### STAY TUNED FOR NEW RESULTS!!



## **Prompt Lepton MVAs**





## SYSTEMATIC UNCERTAINTIES

#### Experimental

- Trigger efficiency: 1-3%, shape uncertainty
- Lepton ID efficiency: 2-5%
- Tau ID efficiency: 5%
- Jet and tau energy scale: shape uncertainty
- B-tagging: shape uncertainty
- Fake background estimation: 50%(30%) for normalization in categories where  $\tau_h$  included (excluded) in FF method + shape uncertainty
- Charge flip background: 30%
- Luminosity: 2.3%
- Pileup: < 1%</li>

#### Theoretical

- ttH NNLO correction: +5.8%/-9.3%
- ttH PDFs and  $\alpha_s$ : 3.6%
- ttV NNLO correction: 8-13%; PDFs and  $\alpha_s$ : 3-4%
- QCD renormalization and factorization scales: shape uncertainties
- Di-boson, tty\*+rare SM backgrounds: 50%
- Background due to fake  $\tau_h$  in 2lss+ $1\tau_h$  and 3l+ $1\tau_h$ : 30%

HIG-18-019 Pre-approval 6/12/18 (35)

17