Lepton Universality tests in semitauonic b-hadron decays at LHCb

Julián Lomba Castro

3rd RED LHC Workshop, Madrid 8th May 2019

Lepton Flavor Universality

 In the SM, gauge bosons have universal coupling to leptons, independently of their family. This is called Lepton Flavor Universality (LFU).

- Tensions between experiments and SM predictions found in:
 - Charged currents $(b \rightarrow clv)$
 - Neutral currents $(b \rightarrow sll)$
- A violation of LFU would require the existence of new particles outside the SM (H⁻, Z', W'⁻, leptoquarks...).

LHCb detector

- High b-quark production:
 - Run1 (2011-2012, 7-8 TeV):
 ~ 72 μb
 - Run2 (2015-2018, 13 TeV):
 ~ 144 μb
- Excellent vertex and impact parameter resolution ($\sim 25 \ \mu m$)
- b-hadrons highly boosted, giving large values of the impact parameter (~ 800 μm)
- Excellent PID performance for charged particles (muon efficiency of ~ 97%)

[PRL 119 169901 (2017)]

Julián Lomba Castro

LFU tests at LHCb: charged currents

• $b \rightarrow cl\nu$ decays:

$$R(\mathcal{H}_{c}) \equiv \frac{\mathcal{B}(\mathcal{H}_{b} \to \mathcal{H}_{c} \tau \nu_{\tau})}{\mathcal{B}(\mathcal{H}_{b} \to \mathcal{H}_{c} \mu \nu_{\mu})} , \qquad \text{w}$$

where

- In SM: tree-level decays mediated by a W boson.
- Sensitivity to NP contributions at tree level.
- Partial cancelation of form factor uncertainties.
- High rate of charged current decays: $\mathcal{B}(B \to D^* \tau \nu_{\tau}) \approx 1.2\%$.

 τ τ π π

- Muonic channel:
- Hadronic channel:

 $\mathcal{B}(\tau^+ \to \mu^+ \bar{\nu}_\mu \nu_\tau) \approx 17.39\%$

- $\mathcal{B}(\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \nu_\tau) \approx 13.51\%$
- Systematic uncertainties cancel in the ratio $R(\mathcal{H}_c)$ - Presence of inclusive $\mathcal{H}_b \to \mathcal{H}_c \mu \nu_\mu(X)$ decays
- Only one neutrino
- au vertex reconstruction

[PRL 115 111803 (2015)]

$R(D^*)$ muonic

$R(J/\psi)$ muonic

$R(D^*)$ hadronic

[PRD 97 072013 (2018)] [PRL 120 171802 (2018)]

The presence of only one neutrino allows the τ and B^0 momenta to be determined up to a two-fold ambiguity.

 N_{sig} obtained from a binned fit in these variables:

- Squared transferred momentum, q^2
- au decay time, $t_{ au}$
- Output of a BDT, which takes as input 18 variables (kinematic variables of the decay chain and neutral isolation properties)

 N_{norm} obtained by fitting the invariant mass distribution of the $D^{*-}3\pi$ system around the B^0 mass.

Julián Lomba Castro

Candidates / (0.25 ps)

3500 E

3000 E

2500

2000

1500

1000

500

Candidates / 0.1 2000 0009 2000 0009

3000

2000

1000 0

1500

0.5

$3.6 \text{ MeV}/c^2$) (3.6 MeV/c²) LHCb + Data + Data $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ Total Model - Total Model 400 Gaussian Gaussian ---- Crystal Ball - Crystal Ball 300 600 Candidates / (Candidates / (- Background Background (b) (a) 200 400 100 200 5150 5200 5250 5300 5350 5400 5150 5200 5250 5300 5350 5400 $m(D^{*-}\pi^{+}\pi^{-}\pi^{+})$ [MeV/*c*²] $m(D^{*-}\pi^{+}\pi^{-}\pi^{+})$ [MeV/c²] (Run1) $N_{norm} = 17808 \pm 143$ $\mathcal{K}(D^{*-}) = 1.97 \pm 0.13(\text{stat}) \pm 0.18(\text{syst})$ $N_{sig} = 1296 \pm 86$ 1.1σ higher than SM prediction $R(D^{*-})_{had} = 0.291 \pm 0.019 \pm 0.029$ $R(D^*)_{SM} = 0.252 \pm 0.003$

 $R(D^*)$ hadronic

1

LHCb

Data

'otal mode

1.5

 t_{τ} [ps]

500

Combined measurement of R(D) and $R(D^*)$

(Ongoing analysis with Run2 data)

We aim to measure R(D) and $R(D^*)$ via three-prong tau decays, using the data:

• $D^0 3\pi$ with $D^0 \to K\pi$

This data sample includes contributions from $B^- \to D^0 \tau \nu$, $B^0 \to D^* (\to D^0 \pi) \tau \nu$, $B^- \to D^{*0} (\to D^0 \pi^0, \gamma) \tau \nu$...

• $D^{\pm}3\pi$ with $D^{\pm} \rightarrow K\pi\pi$

This data sample includes contributions from $B^- \to D^- \tau \nu$, $B^0 \to D^* (\to D^- \pi^0) \tau \nu$...

The analysis of these samples will provide two independent measurements of R(D) and $R(D^*)$.

Uncertainty projections

Conclusions and prospects

[HFLAV R(D) and R(D^{*}) averages] [Moriond Talk by G.Caria (2019)]

2.3 σ difference in R(D), 3.0 σ in $R(D^*)$, 3.78 σ combined. New Belle preliminary average compatible within 2σ , decreasing the global average to **3.1\sigma** away from SM.

Potential for NP? we need smaller uncertainties!

With Run2 data:

- Updated measurements with reduced uncertainties
- Hadronic $R(J/\psi)$
- Muonic and hadronic measurements of $R(D^+)$, $R(D^0)$, $R(D_s^+)$, $R(\Lambda_c)$

Stay tuned!

11

Backup Slides

$R(D^*)$ muonic: systematic uncertainties

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\overline{B}{}^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6
$\overline{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape corrections	0.5
$\mathcal{B}(\overline{B} \to D^{**} \tau^- \overline{\nu}_{\tau}) / \mathcal{B}(\overline{B} \to D^{**} \mu^- \overline{\nu}_{\mu})$	0.5
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_{\mu}$ form factors	0.3
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form-factors	0.2
$\mathcal{B}(\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

$R(D^*)$ muonic: signal discrimination

 $\overline{B}{}^{0} \to D^{*+} \mu^{-} \overline{\nu}_{\mu}$ $\overline{B}{}^{0} \to D^{*+} \tau^{-} \overline{\nu}_{\tau}$

$R(J/\psi)$ muonic: systematic uncertainties

Source of uncertainty	Size $(\times 10^{-2})$
Limited size of simulation samples	8.0
$B_c^+ \rightarrow J/\psi$ form factors	12.1
$B_c^+ \to \psi(2S)$ form factors	3.2
Fit bias correction	5.4
Z binning strategy	5.6
Misidentification background strategy	5.6
Combinatorial background cocktail	4.5
Combinatorial J/ψ sideband scaling	0.9
$B_c^+ \to J/\psi H_c X$ contribution	3.6
Semitauonic $\psi(2S)$ and χ_c feed-down	0.9
Weighting of simulation samples	1.6
Efficiency ratio	0.6
$\mathcal{B}(\tau^+ \to \mu^+ \nu_\mu \overline{\nu}_\tau)$	0.2
Total systematic uncertainty	17.7
Statistical uncertainty	17.3

$R(J/\psi)$ muonic: systematic uncertainties

3rd RED LHC workshop

$R(D^*)$ hadronic: systematic uncertainties

Source	$\delta R(D^{*-})/R(D^{*-})[\%]$
Simulated sample size	4.7
Empty bins in templates	1.3
Signal decay model	1.8
$D^{**}\tau\nu$ and $D^{**}_s\tau\nu$ feeddowns	2.7
$D_s^+ \to 3\pi X$ decay model	2.5
$B \to D^{*-}D_s^+X, B \to D^{*-}D^+X, B \to D^{*-}D^0X$ backgrounds	3.9
Combinatorial background	0.7
$B \to D^{*-} 3\pi X$ background	2.8
Efficiency ratio	3.9
Normalization channel efficiency (modeling of $B^0 \to D^{*-}3\pi$)	2.0
Total uncertainty	9.1

$R(D^*)$ hadronic: detached vertex cut

Prompt background reduced by three orders of magnitude 40% of signal retained

$R(D^*)$ hadronic: BDT

Julián Lomba Castro

3rd RED LHC workshop