Linear Colliders ILC (Japan) | CLIC (CERN)

Future Circular Collider Circumference: 90 -100 km Energy: 100 TeV (pp) 90-350 GeV (e*e*)

Large Hadron Collider(LHC) Large Electron-Positron Collider (LEP)

Circumference: 27 km Energy: 14 TeV (pp) 209 GeV (e⁺e⁻)

Tevatron

Circumference: 6.2 km Energy: 2 TeV(pp)

PERSPECTIVES IN PARTICLE PHYSICS AFTER LHC RUN2

Germán Rodrigo

EXCELENCIA SEVERO OCHOA

3rd Workshop Red Española del LHC CIEMAT, Madrid, 6-8 May 2019

The Standard Model, the Unsung Triumph of Modern Physics

ROBERT OERTER

NO CLEAR BSM SIGNAL AT THE LHC SO FAR

SM based in the simplest gauge symmetries: SU(3)xSU(2)xU(1)

Also the flavour sector very symmetric (GIM)

- The "natural" theory at "low" energies (below the TeVs)
- We should expect that it will break at high energies: departure scale undetermined | no theory guidance

A	TLAS Exotics	s Search	es* -	95%	6 CL	Upper Exclusion	Limits		ATLA	S Preliminary
St	atus: March 2019							$\int \mathcal{L} dt = ($	3.2 – 139) fb ⁻¹	\sqrt{s} = 8, 13 TeV
	Model	<i>ℓ</i> , γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	¹] Lir	nit	-		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ 2 \ 1 \ e, \mu \end{array}$ $\begin{array}{c} - \\ 2 \ \gamma \\ \hline \\ - \\ 2 \ \gamma \\ \hline \\ multi-channe \\ \rightarrow qqqq 0 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4j$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ $2J$ $\geq 1 b, \geq 1J$ $\geq 2 b, \geq 3$	Yes - - - - 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	M _D M _S M _{th} M _{th} M _{th} G _{KK} mass G _{KK} mass G _{KK} mass g _{KK} mass KK mass	4.1 Te 2.3 TeV 2.8 TeV 3.8 TeV 1.8 TeV	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV V	$\begin{split} n &= 2\\ n &= 3 \text{ HLZ NLO}\\ n &= 6\\ n &= 6, \ M_D &= 3 \text{ TeV, rot BH}\\ n &= 6, \ M_D &= 3 \text{ TeV, rot BH}\\ k/\overline{M}_{Pl} &= 0.1\\ k/\overline{M}_{Pl} &= 1.0\\ k/\overline{M}_{Pl} &= 1.0\\ \Gamma/m &= 15\%\\ \text{Tier (1,1), } \mathcal{B}(A^{(1,1)} \rightarrow tt) = 1 \end{split}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \rightarrow \ell\ell \\ \text{SSM } Z' \rightarrow \tau\tau \\ \text{Leptophobic } Z' \rightarrow bb \\ \text{Leptophobic } Z' \rightarrow tt \\ \text{SSM } W' \rightarrow \ell\nu \\ \text{SSM } W' \rightarrow \tau\nu \\ \text{HVT } V' \rightarrow WV \rightarrow qqqq \text{ m} \\ \text{HVT } V' \rightarrow WH/ZH \text{ model} \\ \text{LRSM } W'_R \rightarrow tb \end{array}$	2 e,μ 2 τ - 1 e,μ 1 τ nodel B 0 e,μ I B multi-channe multi-channe	- 2 b ≥ 1 b, ≥ 1J, - 2 J	- - Yes Yes -	139 36.1 36.1 79.8 36.1 139 36.1 36.1	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass W' mass W' mass	5. 2.42 TeV 2.1 TeV 3.0 TeV 3.7 TeV 4.4 2.93 TeV 3.25 TeV	1 TeV 5.6 TeV feV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1903.06248 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473
C	CI qqqq CI ℓℓ qq CI tttt	_ 2 e,μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	_ _ Yes	37.0 36.1 36.1	Λ Λ Λ	2.57 TeV		21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 1707.02424 1811.02305
MQ	Axial-vector mediator (Dirac Colored scalar mediator (D $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac	cDM) 0 e,μ iracDM) 0 e,μ 0 e,μ cDM) 0-1 e,μ	1 - 4j 1 - 4j $1 J, \le 1j$ 1 b, 0-1 J	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} m _{med} M. m _{\$}	1.55 TeV 1.67 TeV 700 GeV 3.4 TeV		$\begin{array}{l} g_q = 0.25, \ g_{\chi} = 1.0, \ m(\chi) = 1 \ {\rm GeV} \\ g = 1.0, \ m(\chi) = 1 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \\ y = 0.4, \ \lambda = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 <i>e</i> 1,2 μ 2 τ 0-1 <i>e</i> ,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ ⁴ ₃ mass LQ ⁴ ₃ mass	1.4 TeV 1.56 TeV 1.03 TeV 970 GeV		$\begin{split} \beta &= 1\\ \beta &= 1\\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{c} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ B \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \\ \end{array} $	$ \begin{array}{c} X \qquad \text{multi-channe} \\ \text{multi-channe} \\ + X 2(\text{SS})/\geq 3 \ e_{,\mu} \\ 1 \ e_{,\mu} \\ 0 \ e_{,\mu}, 2 \ \gamma \\ 1 \ e_{,\mu} \end{array} $	$ \begin{array}{l} 1 \\ 1 \\ 2 \\ \geq 1 \ b, \geq 1 \end{array} \\ \geq 1 \ b, \geq 1 \\ \geq 1 \ b, \geq 1 \\ \geq 4 \ j \end{array} $	Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass B mass T _{5/3} mass Y mass B mass Q mass	1.37 TeV 1.34 TeV 1.64 TeV 1.85 TeV 1.21 TeV 690 GeV		SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ $\kappa_B = 0.5$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton γ^*	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j –	- - - -	139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass (* mass y* mass	5 2.6 TeV 3.0 TeV 1.6 TeV	6.7 TeV .3 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	$ \begin{array}{c} 1 \ e,\mu \\ 2 \ \mu \\ 2,3,4 \ e,\mu (SS \\ 3 \ e,\mu,\tau \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	≥ 2 j 2 j 3) - - - -	Yes - - - -	79.8 36.1 36.1 20.3 36.1 7.0	Nº mass 56 N _R mass 400 GeV H ^{±±} mass 400 GeV multi-charged particle mass 400 GeV	0 GeV 3.2 TeV 870 GeV 1.22 TeV 1.34 TeV		$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell\tau) = 1$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1509.08059
	√s = 8 TeV	partial data	full d	ata		10 ⁻¹	1	1	⁰ Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

 LHC results suggest that new physics will appear as a gentle deviation from the SM predictions / rare events suppressed in the SM

- LHC results suggest that **new physics** will appear as a gentle deviation from the SM predictions / rare events suppressed in the SM
- Very unlikely to be visible in inclusive observables or total decay rates of known particles: the bulk of the contributions at "low energies", the characteristic hard scale is "low energy"

- LHC results suggest that **new physics** will appear as a gentle deviation from the SM predictions / rare events suppressed in the SM
- Very unlikely to be visible in inclusive observables or total decay rates of known particles: the bulk of the contributions at "low energies", the characteristic hard scale is "low energy"
- Higher chances at the tail of differential distributions (not necessarily a clear bump) "high energy" characteristic hard scale: more sensitive to quantum corrections / missing quantum corrections can fake BSM

symmetry topics

Maximilien Brice and Julien Marius Ordan, CERN

05/02/19 | By Sarah Charley

It's not always about what you discover.

The unseen progress of the LHC

"This work naturally pushes our search methods towards making more detailed and higher precision measurements that will help us constrain possible deviations by new physics," Willocq says.

The LHC Precision Program

At the LHC we can do more than searching for bumps !!

Because of remarkable progresses in:

pdf determination high-order calculations precise MC generators analysis techniques

Precision is not bureaucratic certification of SM success !

Exciting tool to **discover BSM** indirectly. Same chance of success as direct search strategy used to have.

FABIOLA GIANOTTI AT **physicsworld**

Precise measurements of known particles and interactions are just as important as finding new particles

New Physics ?

New Physics ?

A global challenge:

a collaboration of radio telescopes around the world (200 researchers)

DATA/THEORY I INCLUSIVE OBSERVABLES 5-20% THEORETICAL ACCURACY

Czakon et al., arXiv:1803.07623

10%, 20%, 50% IS THE MOST COMMON UNCERTAINTY FOR HADRONIC COLLISIONS IN THE TAILS

NLO revolution (2010-2011) leading to automation in event generators

NLO revolution (2010-2011) leading to automation in event generators

first serious order because protons are not elementary

- NLO revolution (2010-2011) leading to automation in event generators
 - first serious order because protons are not elementary
 - thanks to a better understanding of the mathematical beauty of scattering amplitudes

- NLO revolution (2010-2011) leading to automation in event generators
 - first serious order because protons are not elementary
 - thanks to a better understanding of the mathematical beauty of scattering amplitudes
- Many 2→2 processes at NNLO (since 2015), current frontier is 2→3

0

201

- NLO revolution (2010-2011) leading to automation in event generators
 - first serious order because protons are not elementary
 - thanks to a better understanding of the mathematical beauty of scattering amplitudes
- Many 2→2 processes at NNLO (since 2015), current frontier is 2→3

OCHOA

Rodrigo, Red LHC

0

201

▶ N3LO ggH (2→1): 5% th+3% (PDF- $\alpha_{\rm S}$) [Anastasiou et al., 2016]

PDF BEYOND COLLIDERS: JUAN ROJO

From colliders to the cosmos

New elementary particles beyond the Standard Model?

Origins and properties of cosmic neutrinos?

Nature of Quark-Gluon Plasma in heavy-ion collisions?

150 fb⁻¹ today (only ~ 1/4 analysed)

- **300 fb⁻¹** by 2023
- **3000 fb⁻¹** by 2037

- **150 fb⁻¹ today (only ~ 1/4 analysed)**
- **300 fb⁻¹** by 2023
- **3000 fb⁻¹** by 2037 **•** statistical errors in the range 1% 2%

150 fb⁻¹ today (only ~ 1/4 analysed)

- **300 fb⁻¹** by 2023
- **3000 fb⁻¹** by 2037

statistical errors in the range 1% - 2%

LHC PHYSICS AT % PRECISION ?

LHC data is challenging our expectations to find BSM

- > LHC data is challenging our expectations to find BSM
- Change focus: not only discovery, quest for precision at the forefront for better physics | global challenge

- LHC data is challenging our expectations to find BSM
- Change focus: not only discovery, quest for precision at the forefront for better physics | global challenge
- It requires to challenge our current understanding of QFT in many different aspects

- LHC data is challenging our expectations to find BSM
- Change focus: not only discovery, quest for precision at the forefront for better physics | global challenge
- It requires to challenge our current understanding of QFT in many different aspects
- % physics still far away (2037?), but promising landscape given the recent successful developments in the field

The present situation in physics is as if we know chess, but we don't know one or two rules.

— Richard P. Feynman —

AZQUOTES