Theoretical Landscape of Dark Matter Searches in Neutrino Experiments

Yanou Cui

UC Riverside

UTA Workshop on " New Opportunities at the Next Generation Neutrino Experiments" Apr 12, 2019

What is Dark Matter ?

Dark Matter: 85% of cosmic matter abundance!
 Cold, non-relativistic

Big mystery! Demand new particle physics beyond the Standard Model !

WIMP DM Paradigm Facing Challenges

• But no convincing signal yet: many years, many experiments...

 $\Omega_{\chi} \propto \langle \sigma_{\rm ann} v \rangle^{-1}$ ~ $0.1 \left(\frac{G_{\rm Fermi}}{G_{\chi}} \right)^2 \left(\frac{M_{\rm weak}}{m_{\chi}} \right)^2$

WIMP DM Paradigm Facing Challenges

 But no convincing signal yet: many years, many experiments...

Time to go beyond the paradigm! New theories, new experimental probes for DM...

(DM: mass? interaction with SM? self-interaction? how many species? thermal or non-thermal? fundamental particle or composite?...)

Experimental probes for DM - A Brief Review of the familiar (incomplete list)

If DM interacts with SM beyond gravity:

- Detect cosmic bkg of DM:
- Direct detection (~10 keV Enucl),
- Indirect detection
- (DM annihilation to <u>SM</u> in GC/Sun)

 Produce DM at terrestrial accelerator experiments:
 <u>colliders</u>

Experimental probes for DM - A Brief Review of the familiar (incomplete list)

If DM interacts with SM beyond gravity:

- Detect cosmic bkg of DM:
- Direct detection (~10 keV E_{nucl}),
- Indirect detection
- (DM annihilation to <u>SM</u> in GC/Sun)

 Produce DM at terrestrial accelerator experiments:
 <u>colliders</u>

- If DM only interacts with SM gravitationally:
- Astro/cosmo probes:
 CMB, DM halo, GW

Opportunities for DM searches in Neutrino facillities?

(If DM interacts with SM beyond gravity...)

Detect cosmic bkg of DM:

Advantages: large volume, e.g. IceCube, SuperK, DUNE, sensitivity to high *E* scattering events (c.f. direct detection)

Examples: boosted DM (BDM), iBDM, self-destructing DM (+ the vanilla example: WIMP annihilation to v)

Produce DM with terrestrial accelerators:

Advantages: fixed target+high intensity beam, e.g. MiniBoone, DUNE, NOvA (c.f. LHC)

Examples: low mass DM search (MeV-GeV)

Detect Cosmic Background of Relic DM

Example-1: Boosted DM

JCAP 1410 (2014) 062, **YC** w/Agashe, Necib, Thaler, JCAP 1502 (2015), **YC** w/Berger, Zhao; **YC** with Berger, Tsai et al. (DUNE TDR+ papers in progress)

Boosted DM: DM today may not be all cold, a component of non-thermally produced DM may be (semi-)relativistic, and the smoking-gun signal for DM!

A New Realization of WIMP Miracle

• Determines $\Omega_{DM}!$

- Conventional signals absent/suppressed
- Applies to other masses!

A New Realization of WIMP Miracle

- Massive X (m_X ≥ eV): Ω_X >1
- $rightarrow deplete X via annihilation \rightarrow SM$

- Determines $\Omega_{DM}!$
- Conventional signals absent/suppressed
- Applies to other masses!

A New Realization of WIMP Miracle

- Massive X ($m_X \ge eV$): $\Omega_X > 1$
- ⋴ eplete X via annihilation → SM

• Determines $\Omega_{DM}!$

Conventional signals

absent/suppressed

Applies to other masses!

• Novel signal: Boosted DM (X) (Vs. "slow" DM) !

YC w/Agashe, Necib, Thaler; YC w/Berger, Zhao 2014

A New Realization of WIMP Miracle

- Massive X ($m_X \ge eV$): $\Omega_X > 1$
- ⋴ eplete X via annihilation → SM

• Determines $\Omega_{DM}!$

Conventional signals

absent/suppressed

Applies to other masses!

• Novel signal: Boosted DM (X) (Vs. "slow" DM) !

YC w/Agashe, Necib, Thaler; YC w/Berger, Zhao 2014

• Dark matter lives in a hidden sector! (DM, X, +...)

DM DM $\cdot Z_3$ semi-annihilating $m_Y < m_{\rm DM}$ dark matter: Y DM DM DM Self-annihilating DM dark matter: DM DN/ X $\gamma_X = m_{\rm DM}/2m_X$ Decaying dark matter: DM X DM DM-induced nucleon decay: DM р π^0

How to Search for Boosted DM?

- Small flux $\propto n_{\rm DM-A}^2$
- Boosted incoming B
 - ⇒ Relativistic outgoing e⁻, p

How to Search for Boosted DM?

- Small flux $\propto n_{\rm DM-A}^2$
- Boosted incoming B
 - ⇒ Relativistic outgoing e⁻, p

What experiments?

Large volume detector + sensitive to energetic e⁻, p
(Conventional DM direct detection ²; opportunity: low energy boosted DM
(E≤O(GeV)) Cherry et.al 2015, YC w/Pospelov, Pradler 2017)

How to Search for Boosted DM?

- Small flux $\propto n_{\rm DM-A}^2$
- Boosted incoming B
 - ⇒ Relativistic outgoing e⁻, p

What experiments?

Large volume detector + sensitive to energetic e⁻, p (Conventional DM direct detection "; opportunity: low energy boosted DM ($E \leq O(GeV)$) Cherry et.al 2015, YC w/Pospelov, Pradler 2017)

Experiments for neutrinos or proton decay!

- Cherenkov-radiation: SuperK/HyperK, IceCube/PINGU...
- Liquid scintillator: Borexino, JUNO...
- Liquid Argon: *DUNE/LBNF*!

Search Strategies for Boosted DM

-A combination of conventional DM indirect & direct detections

Signals from the galactic center:

How to Distinguish Boosted DM from Neutrinos?

• Directionality:

Boosted DM: from DM concentrated region, e.g. GC, Sun...

Vs. (atmospheric) neutrino: isotropic

Interaction:

Boosted DM interaction: neutral current-like only, Vs. Neutrino: neutral current + charged current

No correlated muon, muon veto

BDM Searches at Next Generation v Experiments (e.g. DUNE)

• BDM searches at Cherenkov detectors (IceCube/ PINGU, SuperK): studied in our earlier papers, SuperK official analysis arXiv:1711.05278 PRL 2018

BDM searches at DUNE

Particular advantages in hadronic channels:

- Lower E threshold for elastic scattering-capture more signals! (Cherenkov cutoff E>1.07 GeV vs. E ≿10 MeV @DUNE)
- Excellent particle track reconstruction for inelastic scattering!-capture more signals esp. for very boosted DM

Confront new challenges, theoretical & experimental

- Our on-going studies (w/brand new tools for event generation+detector simulation, see Yun-Tse, Josh's talks)

BDM@DUNE through Hadronic Interactions — could be the smoking-gun for DM!

Benchmark model: BDM from DM annihilation in the Sun

Work in prep with Berger, Tsai, Petrillo, Stocks, Graham, Convery, Necib and Zhao

Preliminary Results

E.g. two-component fermion dark sector, interact via a dark photon (1 GeV)

Example-2: Inelastic BDM

• Work involving Doojin, Seodong, Jae, Animesh, Albert, Jong-Chul (here) + Giudice et al. (2016-)

More see Doojin's talk

Example-3: Self-destructing DM

Arxiv:1702.00455 Grossman, Harnik, Telem and Zhang

Produce DM with Accelerator Neutrino Experiments

Low Mass DM @ v Experiments

Production of Low Mass DM Beam

MeV-GeV gauge boson kinetically mixed with the photon $\,g_{A'}^{
m SM}=\epsilon e x_{
m f}$

MeV-GeV scalar DM (no tension with CMB) $g^{\phi}_{A'} \sim \mathcal{O}(1)$

• Production via meson decay

Direct Production

On shell production of the mediators is essential

High intensity experiments: order 10²⁰ protons on target per year!

Credit: C. Frugiuele's KITP talk 2018

Conclusion/Outlook

- Exciting opportunities for DM discovery with next gen. neutrino experiments!
 - Detect cosmic relic background of DM (the high E_{recoil} regime)
 - Produce DM beams (high intensity)
- Open questions to brainstorm about:
 - Other DM candidates to probe
 - Distinguish from neutrinos (model-dependent)
 - Optimize experiments for DM searches at the design stage (esp. for DUNE)
 - Dedicated simulation tools
 - Complementarity among different v experiments (JUNO, DUNE, HyperK...)

Dark matter discovery at next gen. neutrino experiments?

SPARTICLEZOO

Thank you!