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Why LAFTPC?
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Long Baseline Experiment

Deep Underground Neutrino Experiment (DUNE)

Sanford
Underground
Research o
Facility -
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| 300km

| Ok ton In 2024, 40k ton in 2028

® Aim to measure

e (CP violation in lepton sector

® neutrino mass ordering

® neutrinos from supernovae,

broton decays, etc.

® v, from Fermilab accelerator,

|0

etected by LArTPC



Short Baseline Program
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® Address LSND and MiniIBooNE anomalies: sterile V!

® Measure V-Ar cross section

® BNB vy from Fermilab accelerator

® 3 | ArlPC detectors in different baselines
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Avallable LArT PCs

prototype ® DUNE near detectors:

® (Characterize the neutrino flux
® Measure V cross sections

® Search for new particles produced In
the beam, e.g. heavy neutral lepton,
dark sector and millicharged particles

® Short baseline
neutrino program:

Search for sterile v

~500m,
O(100ton)
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Avallable LArT PCs
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Avallable LArT PCs

(Boosted)
dark matter? Solar;
® DUNE far detectors o atmospheric,
| | B supernova
® CP violation 3 relic v

® Mass ordering

® Neutrino mixing parameters
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® Boosted dark matter search

® Nucleon decay search
® Astroparticle/rare process searches > 1000km, ~40k ton
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Unique Features of LArTPC

° detection
® Supernova neutrinos

° on detection
® p—oKtV

® Boosted dark matter

® Dark sector particles

® Single electron signature with O(10MeV)

® Neutron-antineutron oscillation, n+N—TT TT-3TTC

® Vr appearance



L Arl1PC Near Detector

® Advantages

® Relatively target

® Active In the

° on hadron/muon detection
® Shortcomings

® ' a slow detector

® 5M neutrino background (V-Ar interactions)
® Search for exotic particles

® [hrough interactions with LAr

® \With low energy
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Data Acquisrtion

Record neutrino events induced by accelerator beam:
Know when neutrinos arrive in advance
Record the relevant chunk of data
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Data Acquisrtion

Record neutrino events induced by accelerator beam:
Know when neutrinos arrive in advance
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Data Acquisition

Record physics events not induced by accelerator beam:
Do not know when Interesting events occur in advance
Continuously read out data

Find Interesting events In real time and record them
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Data Acquisition

Record physics events not induced by accelerator beam:
Do not know when Interesting events occur in advance
Continuously read out data

Find Interesting events In real time and record them
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Data Acquisition

High spatial resolution in LArTPC results in a huge
volume of data

Find Interesting events In real time and record them
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Time
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Activity Correlation

Scenario |

Time




Activity Correlation

Scenario 2 Scenario 3




Activity Correlation

All thé scenarios look
identical In the 2D projection

Possible solutions

® (Good light detection and
ight-charge matching

® )D Pixel charge readout
obtaining 3D information:
DUNE near detector

Run 3469 Event 53223, October 21%, 2015
55 cm
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Reconstruction Challenges




Reconstruction Challenges
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_arge amount of Information

-Ind the signal events (interaction vertices help)




Reconstruction Challenges

; : pﬂooﬂgﬂ.
_arge amount of Information

-Ind the signal events (interaction vertices help)

“® (Correlate charge deposition to physics
objects

~104cm ® (Obtain appropriate energy corrections




Possible Background Source

uBooNE
B

o //.

Mis-reconstructed and/or
misidentified particles from
beam neutrinos or atmospheric
neutrinos mimic signals we are
looking for

e

Run 3471 Event 54287, October 21°%, 2015
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Analysis Team: Josh Berger, Mark Convery, Yanou Cui, Matt Graham, Lina Necib, Gianluca Petrillo,X.-T.Tsal, Yue Zhao
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Boosted Dark Matter

|. Cold dark matter captured by
““cogoM  dark matter concentrated region,
such as the Sun or Galaxy Center

Refs:Y. Cul’s, J. Berger's Talks,
JCAP 1502 (2015) 005
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http://iopscience.iop.org/article/10.1088/1475-7516/2015/02/005/meta

Boosted Dark Matter

|. Cold dark matter captured by
““cowpm  dark matter concentrated region,
such as the Sun or Galaxy Center

Cold DM Boosted DM

~a
e
Cold DM Boosted DM

2. Produce lighter,
boosted dark matter via
annihilation or decay

Refs:Y. Cul’s, J. Berger's Talks,
JCAP 1502 (2015) 005
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Boosted Dark Matter

L 4
l 4
4

|. Cold dark matter captured by
=" coldbM  dark matter concentrated region,

-
such as the Sun or Galaxy Center
ColdDM  Boosted DM ~*~. 3. Boosted dark matter
~ e, Boosted DM interact with electrons or
7 nucleons Iin detectors
Cold DM Boosted DM

2. Produce lighter,
boosted dark matter via
annihilation or decay

Refs:Y. Cul’s, J. Berger's Talks,
JCAP 1502 (2015) 005
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Boosted Dark Matter

L 4
l 4
4

|. Cold dark matter captured by
=" coldbM  dark matter concentrated region,

-
such as the Sun or Galaxy Center
ColdDM  Boosted DM+« 3. Boosted dark matter
~ e, Boosted DM interact with electrons or
Pl nucleons in detectors

Cold DM Boosted DM

2. Produce lighter,
boosted dark matter via
annihilation or decay

Refsy Cus | persers Taks, 4. LOOK for scattered electrons or recoll protons
JCAP 1502 (2015) 005

30


http://iopscience.iop.org/article/10.1088/1475-7516/2015/02/005/meta

Main Backgrouna

Main background events:

.
‘4
-
‘4
l 4
'f
-
| 4
-
-
‘4
L 4

‘f
‘4
-

31



Main Backgrouna

Main background events: .
Bartol maximum

flux: Ve, Vi, Ve, Vyu
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Main Backgrouna

Main background events: .
Bartol maximum

flux: Ve, Vi, Ve, Vyu
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Main Backgrouna

Main background events: .
Bartol maximum
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Randomly sample the TV
Sun position In a year ’
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Main Backgrouna

Main background events:
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Randomly sample the
Sun position In a year
for each event
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Bartol maximum
flux: Ve, Vi, Ve, Vyu

1 4
4
Y,

GENIE for neutrino-Ar
and final state interactions

845 NC events in [0k
ton LAr per year



Definition of Angle, O

Ar

Angle between the Sun
direction and the total
momentum of all the visible
particles in the final state
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Preliminary Selection
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Preliminary Selection

6000
. — DM,E=125GeV x5
5000_ DM, E = 20 GeV
- —— DM, E =100 GeV
4000 Atmospheric Nus x 100
3000:_ cosB > 0.6
- ® (Obtain the for
2000 signal models Feamaiad®

1000 e (Count the expected number

of events for background
. e T — L
0—1 -0.8-0.6-0.4-02 0 0.2 04 0.6 0.8 1

COs(0)
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Sensitivity Comparison

o DUNE with 10 years and
40k ton fiducial volume

° with 6 years and
22.5k ton fiducial volume
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Courtesy of Josh Berger, in progress

DUNE sensitivity
Super-K (10% eff.)
Super-K (100% eff.)
PICO-60 (SD-p)
PandaX (SD-n)

5 10 15 20 20 30 39 40
MB (GeV)
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Analysis Team: Owen Goodwin, Davide Porzio, Stefan Séldner—Rembold,Y—TTsai
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Heavy Neutral Lepton

Search for
(HNL or N) may help
understand neutrino mass generation

Target
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Heavy Neutral Lepton

Search for
(HNL or N) may help
understand neutrino mass generation

Target Oecs p4, 14

Accelerator produces
,which decay into a
charged lepton and a Via a

mixing angle, Oe4, 4, t4, between
the SM neutrino and the HNL

36

Consider Majorana particles
No helicity suppression



HNL Detection

Detector
HNL travels along the

neutrino beam line and
decay In flight
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HNL Detection

HNL travels along the
neutrino beam line and
decay In flight

Detect the decay
products In the detector.
Effectively event rate
production X decay rate.
Measure the mixing angle

Ou4 e4 14 With each Mn

37

Detector

A decay channel



2-body Decay Signature

® Fully reconstructed final states

® Able to reconstruct the invariant mass of
HNL, a powerful discriminant o

N .

Focus on NOW:
more mature reconstruction

for Y than e d
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Time of Flight

470m
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Time of Flight
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Data-Driven Analysis

Triggered events Vetoed events

<

® Use the events triggered In late trigger window, but vetoed
those triggered In the BNB trigger window

® ~|0% HNL (Mn=3/0MeV/c?), but no SM neutrino background

® Measure an excess of events Iin a data sample containing only

COSMIC rays
44



Sensitivity
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Run 1149 Event 158. August 6" 2015 17:52
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Neutron Detection

1 <0 )] 150 200

ArgoNeu | measured energy o
depositions from photons
produced by

® [De-excitation of the
iInteracted nucleus

Distance From Vertex

® |nelastic scattering of
primary neutrons

10C

—4— Cata
I Ce-excitation

B Neutron

0
(an )

lllllllllll

Open a window of studies of
new physics scenarios

(22
(=]

5

N.urber of Clusters

Not able to separate the
two sources yet ”

arXiv: 1810.06502 c
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Dislance (cm)
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https://arxiv.org/abs/1810.06502

Summary

o . A promising technology of neutrino
experiments being rapidly developed

® Unique features of LArTPCs allow sensrtivity in
unprobed parameter space and potential
discovery

® [rurtful beyond Standard Model physics
opportunrties with

® Far detectors (DUNE)
® Near detectors (SBN and DUNE)
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