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Overview

● Machine learning has a long history in HEP experiments
– Neural networks, BDT, kNN, SVM

● Deep-learning revolution in 2012 has reinvigorated the machine learning field
● Virtually all HEP experiments have realized that new deep-learning 

techniques have broad applicability to our problems
● I will mostly be talking about NOvA and DUNE, but the techniques I will 

discuss are increasingly in common usage
● On the cusp of full end-to-end deep-learning-based reconstruction which 

may open new avenues for BSM searches
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NuMI Off-Axis ne Appearance Experiment

NOvA is a long-baseline neutrino oscillation experiment located 14 mrad off-axis 
from the NuMI beam designed to measure:

ne appearance
● Mass hierarchy
● CP violation

● q23 octant

nm disappearance
● Improved precision on |Dm2

32| and q23

Others
● Short-baseline 
steriles
● Cross sections

● Supernovae
● Exotics

NC disappearance
● Search for sterile neutrinos
● Constrain q34 and q24
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NOvA Detector Design

Far detector (FD)
● 14 kton
● 65% active mass
● ~344,000 channels

Near detector (ND)
● 0.3 kton 
● Functionally equivalent to FD for 

systematic uncertainty reduction 
● Faster electronics 
● Muon catcher to contain muons

● ~20,000 channels

Low Z tracking calorimeter 
composed of alternating 
horizontal and vertical 
planes of liquid scintillator
filled cells.

Wavelength shifting fibers 
carry light out of the cells to 
APDs.
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Event Topologies

● Low Z detector materials lead to long tracks and 
well developed showers

● Key challenges
– Discriminating between muons and charged pions

● Both can produce long tracks, but muons are usually 
longer and interact less with nuclei

– Discriminating between electrons and photons
● Electrons start showering immediately, but photons 

travel a short distance before showering
– Crucial since neutral pions decay into photons

● In the standard workflow, reconstruct particle 
content of the event and try to classify the 
neutrino flavor and interaction type

● Events in NOvA look like images
– Try using convolutional neural networks for 

classifying
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Convolutional Neural Networks

● X and Y views can be interpreted as pictures of a 
neutrino interaction from the top and the side

● Convolutional neural networks have been highly 
successful at image recognition tasks

● Two basic type of layers:
– Convolutional layers – apply discrete convolutions 

using learned kernels to extract features from the 
image.

– Pooling layers – down sample the image and increase 
translational invariance in the final output.

● Stacked structure of convolutional and pooling 
layers extract increasingly abstract features from 
the input raw data encoding both local and global 
structure.
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Convolutional Visual Network
● Detector is composed of alternating horizontal and vertical planes

– Two views of the event-  one from top and one from side

– Resulting pixel maps are sparse
● Create a “siamese” GoogLeNet variant

– Split the views early and extract parallel features
– Merge together at the end before going through fully connected layers

– 1024 features are used in the final layer for classification.

● The architecture is a multi-
classifier
– Neutrino flavor

– Type of interaction with the 
nucleus

● In principle, this architecture is 
a universal neutrino classifier
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Training

Neutrino mode Antineutrino mode
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Understanding the Network: Feature Embedding with t-SNE

EM shower
dominated

Hadronic shower
dominated

Long tr acks

Beam-directed tracks

Steep-angle tracks
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Understanding the Network: Occlusion Tests
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Understanding the Network: Occlusion Tests
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Hybrid Event Testing

● Select likely nm events in the Near Detector

● Remove hits from the identified muon track

 
● Insert a simulated electron of the same 

momentum as the removed muon

● Data and MC efficiency agree to better than 1%  
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Use Case: ne Appearance
● CVN selected ne sample is 73% efficient and 76% pure

– Improvement of traditional selection techniques 
equivalent to a 30% increase in detector mass

● Excellent data/MC agreement in the Near Detector  



13 April 2019 Adam Aurisano - New Opportunities 14

Use Case: Sterile NC Disappearance
● CVN is in broad use within the experiment

– Primary selector in standard oscillation analyses
● Is a multi-selector → provides NC selection for free
● Excellent CC/NC separation
● Good data/MC agreement in the ND
● No evidence of sterile neutrinos 
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Traditional Reconstruction Methods

Event Separation: Coarse event-
level time-space clustering (slicing) 
using the DBSCAN algorithm.

Vertexing: Find lines of energy 
deposition using the Hough 
transform.  Find the best point line 
radiate from.

Prong Clustering: Find clusters in 
angular space around the vertex in 
each view.  Merge views using 
topology and prong dE/dx.
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Prong CVN

● Full reconstruction is the dream
– Still in the future, though instance-aware 

semantic segmentation is actively being 
developed 

● Attempt to categorize prongs 
reconstructed using traditional 
methods to determine the type of 
particle that created it

● Modify CVN to take 4 views
– Two prong-only views

– Two context views

● Depends heavily on the quality of the 
reconstructed prong
– This method cannot fix if prong 

matching between views failed

Prong:
Side view

Context:
Top view

Prong:
Top view

Context:
Side view
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Confusion Matrices 

All particles are identified with high 
efficiency and purity except for pions
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Context Matters
● Adding in full event context introduces dependence on 

GENIE interaction model
● What happens if context is removed?
● Without context:

– Muons are more likely to be mis-identified as pions
– Photons are more likely to be mis-identified as electrons

● Vertex information is particularly important here
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Use Case: p0 Mass Peak

● The p0 mass peak provides a way to test the ND 
energy response in data and MC

● Look for two photons emerging from a common 
vertex

● Prong CVN produces a 12% improvement in selection 
purity with similar efficiency to traditional methods.

Traditional 
selection

Prong CVN 
selection
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LSTM Energy Estimation

● Recurrent neural networks and LSTMs 
provide a way to accept sequences as NN 
input

● Current neutrino energy estimators use 
coarse-grained energy information
– Calorimetric energy of full hadronic system is 

usually used as a single input
● Use an LSTM network to accept variable 

length list of prongs with particle hypotheses 
and energy and momentum estimates

● Method builds up a representation of the 
event that models particle kinematics

● First results show improved energy estimation

ne CC

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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DUNE

● Future flagship long-baseline neutrino experiment
● Goals:

– Observe ne appearance and nm disappearance in a wideband 
beam

– Measure mass hierarchy, CP-violating phase, and atmospheric 
parameters with high precision

● Ancillary program: sterile neutrinos, nt appearance,  solar 
neutrinos, dark matter, and more

● Near Detector 575 m from target
● Far Detector 1,300 km from target, 1.5 km  

underground
– Liquid argon time projection chamber technology 

for high resolution imaging
– 4 modules, each with at least 10 kton fiducial mass
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Promise of LArTPC Technology

Induction plane 1 Induction plane 2 Collection plane

● Wire planes have a 3 mm spacing
● Drift field is 500V/cm
● Maximum drift length is 3.53 m
● Spatial resolution is good enough to distinguish individual electron-positron pairs in an EM 

shower!

– Blessing and curse – high resolution images are hard to automatically reconstruct
● For classification, use regions 500 wires long and 1.2 ms wide (in 500 time slices)
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Multi-target Network

● Network is inspired by the NOvA network, but with a few 
key differences

● Underlying architecture:
– GoogLeNet → SE-ResNet-34 (arXiv:1709.01507v2)

● Three views separately fed into first two blocks of SE-
ResNet-34, then concatenated and fed into remaining blocks

● Multi-target outputs allow for learning many characteristics 
of the neutrino interaction in one pass
– Neutrino/Antineutrino
– Flavor
– Interaction type
– Proton multiplicity
– Charged pion multiplicity
– Neutral pion multiplicity
– Neutron multiplicity



13 April 2019 Adam Aurisano - New Opportunities 24

Effect on CP-Violation Analysis

● CDR assumptions of the power of LAr technology implied 
significant discovery potential over most of the parameter space

● Traditional reconstruction and shallow machine learning 
methods could not reproduce CDR expectations

● CVN is the first method that exceeds CDR expectations in the 
most important energy range
– It does not appear that we have exhausted potential improvements 

yet
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Toward Full Reconstruction
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Graph Convolution Network Tracking

● HEP.TrkX collaboration developed novel tracking technique using graph neural networks, 
part of the Geometric Deep Learning field

● Represent tracker hits as nodes in a graph and possible connections between hits as edges
– Need some sort of pre-processor, like a Hough Transform, to generate the initial graph

● Alternate two networks
– Edge network computes weights for every edge using features of start and end nodes
– Node network computes new node features using edge weights and current node features

S. Farrell, HEP.TrkX Collab, CtD 2018
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Graph Convolution Network Tracking: Iteration 1

S. Farrell, HEP.TrkX Collab, CtD 2018
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Graph Convolution Network Tracking: Iteration 2

S. Farrell, HEP.TrkX Collab, CtD 2018
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Graph Convolution Network Tracking: Iteration 3

S. Farrell, HEP.TrkX Collab, CtD 2018
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Graph Convolution Network Tracking: Iteration 4

S. Farrell, HEP.TrkX Collab, CtD 2018
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Graph Convolution Network Tracking: Final Iteration

S. Farrell, HEP.TrkX Collab, CtD 2018
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Semantic Segmentation
● Based on UNet architecture
● Classifies each pixel as either part of a track or a 

shower
● Perform classification before higher level 

reconstruction (classification guides reco)
● Could be used to classify the type of particle creating 

the hits as well (currently being explored at NOvA)

Truth Hand Scan Labeling Network Output
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Why Does This Matter for BSM Searches?
● DUNE will have opportunities to study tau neutrino 

appearance
– Low energy beam: 130 nt/year

– High energy beam: 800 nt/year

– Atmospherics: 30 nt/year

● High efficiency and purity will be critical 
– For atmospherics, per kton-year

● 88 ne

● 102 nm

● 95 NC
● 1 nt

● Truth studies (J. Conrad, A. de Gouvea, S. Shalgar, 
and J. Spitz, PRD 82, 093012 (2010)) suggest ~30% 
signal efficiency and ~0.5% NC efficiency may be 
possible
– Traditional techniques and DUNE CVN cannot achieve 

this yet – may need full deep-learning reconstruction to 
attain

● Atmosopheric nt sensitivity

● Sensitive to reconstruction capabilities
● Blue: IceCube-Deep Core zenith angle and 

energy resolutions
● Red: ½ IceCube-Deep Core resolutions

Preliminary
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Summary
● Modern deep learning techniques are very powerful and are an excellent fit for neutrino experiments
● Using a modified GoogLeNet architecture, it is possible to create a universal neutrino interaction 

classifier that
– Uses minimal reconstruction

– Significantly increased our ne selection efficiency
● Equivalent to a 30% increase in detector mass

● CVN was central to the ne appearance analysis

● In wide use throughout NOvA and is critical for the NC disappearance analysis
● Efforts to develop reconstruction methods using deep learning are underway

– Prong CVN classifies prongs according to the particle that created them with high efficiency and purity
– Full reconstruction based on instance aware semantic segmentation is being actively developed

● CNNs were critical for DUNE to achieve design sensitivities with realistic simulation and 
reconstruction
– Multi-target outputs provide a fine grained view into neutrino interactions
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Thank You!
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Training

Neutrino mode Antineutrino mode
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CNN Energy Estimation

● Also attempts to estimate energy 
directly from pixel maps with minimal 
reconstruction

● A variant of the CVN architecture
– Adds in extra reconstructed vertex 

information into the fully connected layer
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