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Introduction

● Machine learning has become a common tool for broad spectrum of 
problems (industry & physics)
– Particle/signal identification

– Image/speech recognition

● Meanwhile, field-programmable gate arrays (FPGAs) have been used for 
decades to provide fast computing solutions
– Development typically requires large initial investment (learning VHDL/Verilog, 

hardware cost)

– Complex algorithms can be very difficult to implement

● hls4ml is a tool which facilitates implementing machine learning on FPGAs 
for fast inference [arXiv:1804.06913]
– Provides possibility for highly customizable solutions to many HEP trigger problems

https://arxiv.org/abs/1804.06913
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Machine Learning

● Machine learning algorithms, especially deep neural networks, are becoming more 
and more common in HEP
– Esp. LHC, neutrinos

● Provides capability to analyze very complex problems in straightforward way
● Very good performance even for difficult tasks
● Networks can become very large → long inference times

BDT

DNN

DeepAK8 (top-tagging)

CMS-DP-2018-046
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Neural Network

W
m,m-1

● Start with input vector (x1)

● Using weight matrix (W), bias 
vector (b), and activation 
function (g), transform input 
vector to intermediate result 
vector (xm)
– Can be repeated many times

● Last layer provides output 
vector
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● Start with input vector (x1)

● Using weight matrix (W), bias 
vector (b), and activation 
function (g), transform input 
vector to intermediate result 
vector (xm)
– Can be repeated many times

● Last layer provides output 
vector

Neural Network

W
m,m-1

VGG16

Can have 100s of millions of parameters



6

LHC Data Processing

● L1 Trigger (hardware: FPGAs)
– O(μs) hard latency. Typically coarse selection, BDT used for muon pT assignment

● HLT (software: CPUs)
– O(100 ms) soft latency. More complex algorithms (full detector information 

available), some BDTs and DNNs used

● Offline (software: CPUs)
– > 1 s latencies. Full event reconstruction, bulk of machine learning usage in CMS
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LHC Data Processing

● DNNs have the potential to greatly improve physics performance in 
the trigger system

● In order to implement an algorithm, need to ensure inference 
latencies of μs (ms) for L1 (HLT)
– For L1, this means we must use FPGAs

● How can we run neural network inference quickly on an FPGA?
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FPGAs

● Field-programmable gate arrays are a common solution for fast-computing
– Ability to re-program for target needs is very appealing

● Building blocks:
– Multiplier units (DPSs)   [arithmetic]

– Look Up Tables (LUTs)   [logic]

– Flip-flops (FFs)               [registers]

– Block RAMs (BRAMs)    [memory]

● Algorithms are wired onto the chip
● Run at high frequency - O(100 MHz)

– Can compute outputs in O(ns)

● Programming traditionally done in Verilog/VHDL
– Low-level hardware languages

● Possible to translate C to Verilog/VHDL using 
High Level Synthesis (HLS) tools

Virtex Ultrascale+ VU9P
6800 Multipliers

1M LUTs
2M FFs

75 Mb BRAM

Virtex 7 XC7VX690T
3600 Multipliers

400K LUTs
800K FFs

10 Mb BRAM
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W
m,m-1

Inference on an FPGA
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W
m,m-1

Inference on an FPGA

Multiplier
Unit

Up to ~6k parallel operations! 
(#Multiplication Units)
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W
m,m-1

Inference on an FPGA

LUTs, FFs, BRAMS

Multiplier
Unit

Up to ~6k parallel operations! 
(#Multiplication Units)
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W
m,m-1

Every clock cycle
(all layer operations can be 
performed simultaneously)

Up to ~6k parallel operations! 
(#Multiplication units)

Inference on an FPGA

LUTs, FFs, BRAMS

Multiplier
Unit
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● hls4ml is a software package for creating HLS 
implementations of neural networks
– https://hls-fpga-machine-learning.github.io/hls4ml/

● Supports common layer architectures and model 
software

● Highly customizable output for different latency 
and size needs

● Simple workflow to allow quick translation to HLS

https://hls-fpga-machine-learning.github.io/hls4ml/
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Project Configuration (Keras)

● Configuration file takes model architecture and weights files as 
input

● Main customization options:
– ReuseFactor: calculations per multiplier per layer (parallelization)

– DefaultPrecision: used for inputs, weights, biases

KerasJson: example­keras­model­files/KERAS_1layer.json
KerasH5: example­keras­model­files/KERAS_1layer_weights.h5
OutputDir: my­hls­test
ProjectName: myproject
XilinxPart: xcku115­flvb2104­2­i
ClockPeriod: 5

IOType: io_parallel # options: io_serial/io_parallel
ReuseFactor: 1
DefaultPrecision: ap_fixed<16,6> 

python keras­to­hls.py ­c keras­config.yml

keras-config.yml
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Customization: Reuse

● For lowest latency, compute all multiplications for a given layer at once
– Reuse = 1 (fully parallel) → latency ≈ # layers

● Larger reuse implies more serialization
– Reuse = # weights (fully serialized) → latency = (# weights) x (# layers)

● Allows trading higher latency for lower resource usage
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Customization: Precision

● hls4ml uses fixed point classes for all 
computations

● Precision can be adjusted as needed for desired 
accuracy, performance
– Also impacts resource usage

● Default behavior is to use same precision for all 
layers
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Design Workflow

● Design model with standard software tools (Keras, Tensorflow, PyTorch)
● Pass network architecture and weights/biases along with configuration 

parameters to hls4ml (creates HLS project)

● Interface HLS code with desired project
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Jet Classification Example

● Perhaps an unrealistic example for L1 trigger, lessons are useful
● Problem certainly a clear candidate for ML usage
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Example Network

16 expert inputs

64 nodes (ReLU)

32 nodes (ReLU)

5 outputs 
(softmax)

32 nodes (ReLU)

5k weights → 5k multipliers
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Reducing Network Size: 
Compression

● Compression
– Removing nodes or connections from network

● To identify redundant connections, we use a method of successive retraining and weight 
minimization (pruning)
– Use L1 regularization, modify loss function with penalty term for large weights
– Remove smallest weights
– Repeat

● HLS automatically removes 
multiplications by 0!
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Reducing Network Size: 
Compression

7th iteration 70% of initial 
weights removed

● Compression
– Removing nodes or connections from network

● To identify redundant connections, we use a method of successive retraining and weight 
minimization (pruning)
– Use L1 regularization, modify loss function with penalty term for large weights
– Remove smallest weights
– Repeat

● HLS automatically removes 
multiplications by 0!
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Reducing Network Size: 
Compression

Greatly reduced 
resource usage

Slightly reduced 
latency

● Compression
– Removing nodes or connections from network

● To identify redundant connections, we use a method of successive retraining and weight 
minimization (pruning)
– Use L1 regularization, modify loss function with penalty term for large weights
– Remove smallest weights
– Repeat

● HLS automatically removes 
multiplications by 0!
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Reducing Network Size: 
Quantization

● Quantization
– Reducing the bit precision used for NN arithmetic

● Software assumes all computations performed with floating point arithmetic
– Not always necessary for desired performance

● Reduction of precision automatically zeros very small weights ( w < 2 -fractional )
– Also reduces resources needs to compute/store 

multiplications and intermediate layers

● Full performance at 8 integer bits, 8 fractional bits
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Network Tuning

● Compression & quantization can be used 
together, maintain full performance
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Network Tuning: Reuse

● Reduces multiplier usage at the cost of increasing latency 
(and initiation interval)
– Scales as expected

● Minimal effect of reuse on LUTs and FFs
● For reuse = 1, <16,6> precision, find total resource usage 

well below available resources for target FPGA (KU115)
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Synthesis vs. Implementation

● All previous results come from HLS synthesis estimates
● Known differences between HLS estimates and final implementation
● For slightly smaller model (this slide):

– FF/LUT – overestimated in most cases

– Multipliers – accurate below max width of multiplier input, overestimated above

● Also able to meet timing constraints
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Under Development

● Large amount of ongoing development with hls4ml

● Expanding tool capabilities
– Working on adding full support for:

● Conv1D and Conv2D layers (partial support)
● LSTM/GRU (testing)
● Graph neural networks (prototyping)
● Binary/ternary dense networks (partial support)
● Pooling (prototyping)
● Boosted decision trees (testing)

– Working on ability to handle larger networks

– Stay tuned for updates!

● Multiple potential use cases for LHC trigger systems
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ML in the CMS Trigger

● CMS endcap muon trigger uses BDT for 
muon pT assignment
– Large DRAM bank on-board to implement 

LUT

● Work ongoing to investigate replacing 
BDT with DNN
– Developing with hls4ml

– CPAD 2018 Talk

● Can use two output nodes to 
simultaneously do pT assignment and PU 
discrimination

● Implementation fits comfortably in a VU9P
– Algorithm latency is 72 ns

– 41% DSP usage

● Also work done for CMS trigger upgrade 
using hls4ml for tau lepton ID
– Range of additional applications for particle 

ID

https://indico.fnal.gov/event/18104/session/23/contribution/71/material/0/0.pdf
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Co-processors

● Increasing popularity of co-processor systems
– CPU connected to a FPGA/GPU/TPU

– Common setup for FPGA connects to CPU through PCI-express

● Allows algorithms to run on the most optimized hardware 
(“acceleration”)

● FPGA-CPU co-processor machines are available as an 
offering on Amazon Web Services (AWS)
– F1 instances (connected to a Virtex Ultrascale+ VU9P) can be 

used to explore possibilities for accelerated inference
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Acceleration with AWS

● Development for FPGA kernel and CPU 
host code is done with SDAccel 
environment
– Invokes Vivado HLS under the hood, produces 

traditional synthesis reports etc.

● Run host code on CPU, manages data 
transfer and FPGA kernel execution

● hls4ml project only needs to be wrapped 
to provide specific inputs/outputs for 
SDAccel to interface properly
– Can be done generically

– Have accelerated variety of hls4ml projects on 
AWS F1

● Limited in speed by I/O bandwidth

Inputs

Outputs

CPU

C++ driver code

Post-processing

 
FPGA 
kernel

PCI express

FPGA
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An Acceleration Case Study (1)

● HCAL reconstruction at CMS currently uses an iterative fit to extract in-time energy
– 15% of HLT processing time

● Similar procedure used for ECAL reconstruction
– 10% of HLT processing time

● Situation expected to worsen in more intense conditions
● We have begun investigating machine learning alternatives

– Similar inputs to current algorithm (energies + η/φ/depth)

– Comparable performance with simple network (3 layers, 15/10/5 nodes)

TS3 pulse
     TS4 pulse
           TS5 pulse

TS0
TS1
TS2
TS3
TS4
TS5
TS6
TS7
iη
iφ

depth

In-time
energy

Inputs

Output
vs
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An Acceleration Case Study (2)

● Have successfully implemented/run the network inference on AWS using 
hls4ml/SDAccel

● https://github.com/drankincms/AccelFPGA
● Including data transfer to/from CPU, whole FPGA inference process takes 2 ms 

for all 16k HCAL channels
– Inference alone takes 80 us (70 ns for one inference)

● Has been tested inside standard CMS software code environment, using high-
level trigger job
– Every event sends input features to 

FPGA, waits for callback

● Iterative fit procedure takes 50 ms 
for same inputs

● FPGA inference is a fixed-latency 
procedure, iterative fit is not

● Inference on CPU or GPU also 
significantly faster than iterative fit
– FPGA inference fastest

Algorithm Architecture Time/event 
(ms)

Iterative 
fit

CPU 50

NN 
Inference

CPU 15

NN 
Inference

GPU 12

NN 
Inference

FPGA 2

https://github.com/drankincms/AccelFPGA
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              /SDAccel Workshop

● Organized workshop for hls4ml and acceleration last week
– How to do ultrafast DNN inference on FPGAs 

– https://indico.cern.ch/event/769727/

● Lots of interest in across many HEP experiments, industry
– 90 participants

● By the end of the course all participants were able to actually run inference on FPGAs
– Used AWS to provide machines for development/acceleration

● Interested in replicating workshop at other locations

https://indico.cern.ch/event/769727/
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Workshop Program

● First part:
– Understand the hls4ml package, its functionalities and design synthesis by running 

with one of the provided trained NN

– Learn how to read out an estimate of FPGA resources and latency for a NN after 
synthesis

– Learn how to optimize the design with quantization and parallelization

● Second part:
– Learn how to export the HLS design to firmware with SDAccel

● Third part:
– Learn how to do model compression and its effect on the FPGA resources/latency

● Fourth part:
– Learn how to accelerate NN inference firmware on a real FPGA (provided on 

Amazon cloud) with SDAccel

– Timing and resources studies after running on real FPGA



36

Microsoft Brainwave
● Microsoft Brainwave is a CPU-

FPGA server farm
● ML offered “as a service”

– Send a preprocessed image to 
Brainwave, get prediction back 
from ResNet50

● Extremely interesting option for 
longer latency (>10 ms) systems

● Stay tuned for another talk in the 
future
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Outlook (1)

● Machine learning is becoming increasingly widely used for complex 
problems
– Not only in physics but also industry

● Some of the most challenging problems in HEP exist in the trigger
– Even with a machine learning solution, still need to be able to perform 

inference very fast → FPGAs

● hls4ml provides the ability to implement very low latency 
machine learning solutions on FPGAs with a high degree of 
customization
– Can adjust configuration of implementation for desired resource usage, 

latency, and accuracy
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Outlook (2)

● Have utilized hls4ml already to enable fast machine learning solutions in CMS trigger
– Ex. muon pT assignment, tau identification, others

● Improvements in fast inference need not be limited to traditionally FPGA-based systems
– Ex. large potential improvement in processing time for HCAL

– Could envision using accelerator cards during offline processing or HLT

● Usage not restricted only to CMS trigger, many other possibilities for use of fast ML
● Growing list of collaborators:

– Jennifer Ngadiuba, Vladimir Loncar, Maurizio Pierini [CERN] Giuseppe Di Guglielmo 
[Columbia University] Javier Duarte, Burt Holzman, Sergo Jindariani, Ben Kreis, Mia 
Liu, Kevin Pedro, Ryan Rivera, Nhan Tran, Aristeidis Tsaris [Fermilab] Edward Kreinar 
[HawkEye 360] Sioni Summers [Imperial College London] Song Han, Phil Harris, 
Dylan Rankin [MIT] Zhenbin Wu [UIC] Scott Hauk, Shih-Chieh Hsu, Dustin Warren, 
Risha Rao [UW] Mark Neubauer, Markus Atkinson [UIUC]
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BACKUP
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Power Usage

● Reuse also improves power consumption
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Example Tuning: Reuse

● Can tune reuse factor in 
hls4ml configuration
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Example Tuning: Reuse

● Can tune reuse factor in 
hls4ml configuration
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SDAccel Dataflow

● Multiple different memory management options

DRAM

BRAM

Registers
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Acceleration with Xilinx xDNN

● Have also investigated Xilinx 
xDNN package for acceleration 
of large convolutional networks
– Connection between CPU and 

FPGA with PCI-express as before

– Major latency comes in xDNN 
setup (loading weights)

– Can batch inputs: allows reuse of 
loaded weights, only costs 
additional few ms per image

● Some similarities with Microsoft 
Brainwave

● Major difference is that 
xDNN/AWS lacks an “as a 
service” offering

Image preprocessing (~10 ms)
Depends on image size

Full xDNN execution (~400 ms)
Includes setup (load weights, etc.)

Inference (~3 ms)

Data transfer (~0.1 ms)

Fully Connected Layer (~2 ms)

Softmax Output Layer (~15 ms)

Data transfer (~0.1 ms)

Using GoogLeNet v1
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