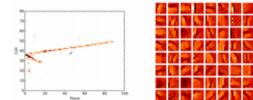
Using Machine Learning on FPGAs to Enhance Reconstruction Output

IRIS-HEP Febraury 13th, 2019

Dylan Rankin [MIT] On behalf of the hls4ml team

Introduction

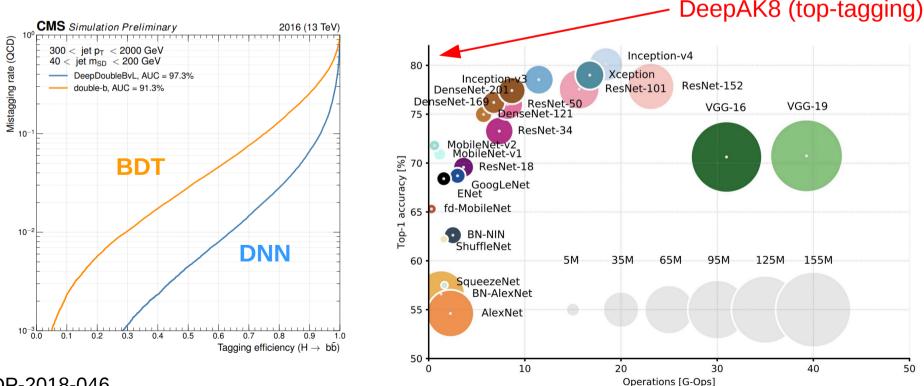
- Machine learning has become a common tool for broad spectrum of problems (industry & physics)
 - Particle/signal identification
 - Image/speech recognition



- Meanwhile, field-programmable gate arrays (FPGAs) have been used for decades to provide fast computing solutions
 - Development typically requires large initial investment (learning VHDL/Verilog, hardware cost)
 - Complex algorithms can be very difficult to implement
- h1s4m1 is a tool which facilitates implementing machine learning on FPGAs for fast inference [arXiv:1804.06913]
 - Provides possibility for highly customizable solutions to many HEP trigger problems

Machine Learning

- Machine learning algorithms, especially deep neural networks, are becoming more and more common in HEP
 - Esp. LHC, neutrinos
- Provides capability to analyze very complex problems in straightforward way
- Very good performance even for difficult tasks
- Networks can become very large \rightarrow long inference times



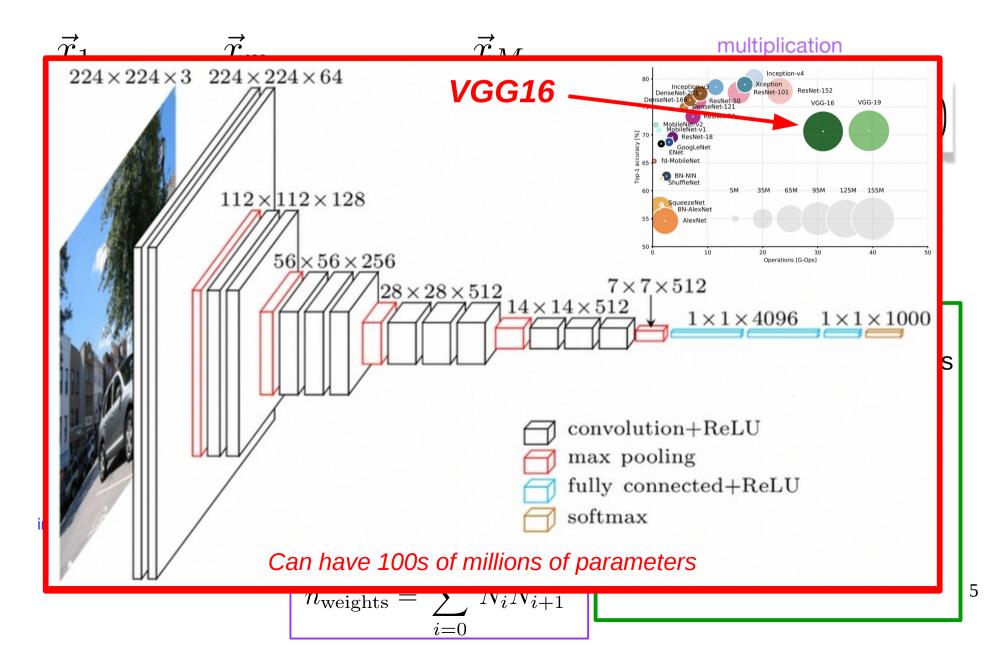
3

CMS-DP-2018-046

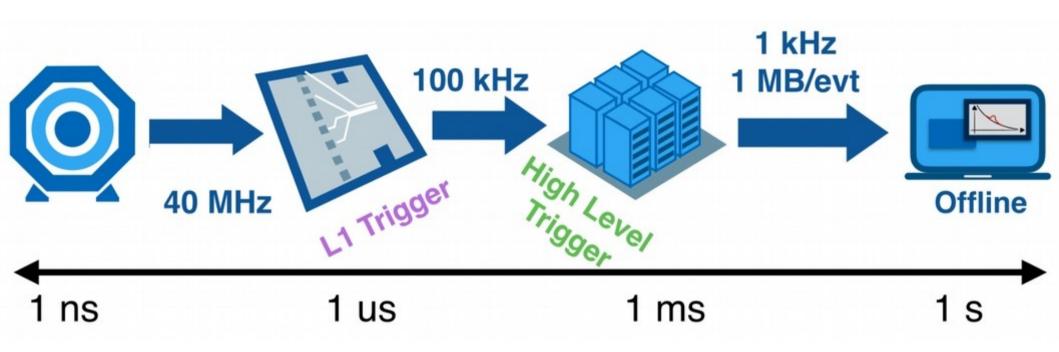
Neural Network

 \vec{x}_1 \vec{x}_M \vec{x}_m multiplication Nm $\vec{x}_m = g_m \left(\mathbf{W}_{m,m-1} \vec{x}_{m-1} + \vec{b}_m \right)$ $W_{m,m-1}$ N₁ NM addition activation function M hidden layers • Start with input vector (x_1) • Using weight matrix (*W*), bias vector (b), and activation function (*g*), transform input vector to intermediate result vector (x_m) output layer $\dim(W_{m,m-1}) = [N_m, N_{m-1}]$ - Can be repeated many times input layer Last layer provides output layer m M-1vector $n_{\text{weights}} = \sum N_i N_{i+1}$ 4 i = 0

Neural Network

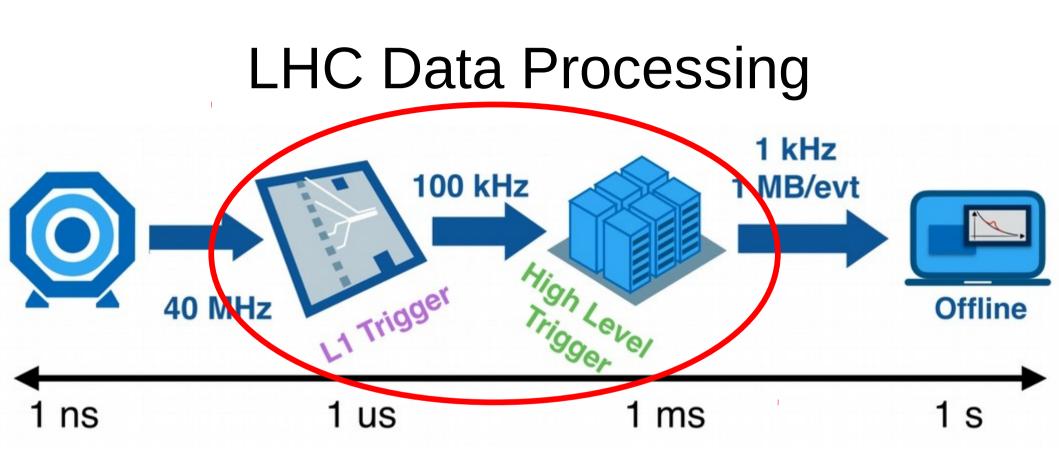


LHC Data Processing



- L1 Trigger (hardware: FPGAs)
 - O(µs) hard latency. Typically coarse selection, BDT used for muon p_{τ} assignment
- HLT (software: CPUs)
 - O(100 ms) soft latency. More complex algorithms (full detector information available), some BDTs and DNNs used
- Offline (software: CPUs)
 - > 1 s latencies. Full event reconstruction, bulk of machine learning usage in CMS

6

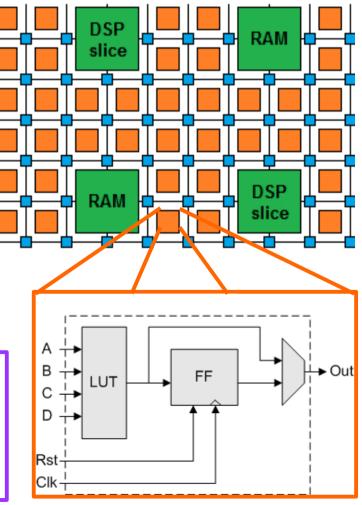


- DNNs have the potential to greatly improve physics performance in the trigger system
- In order to implement an algorithm, need to ensure inference latencies of μs (ms) for L1 (HLT)
 - For L1, this means we *must* use FPGAs
- How can we run neural network inference quickly on an FPGA? 7

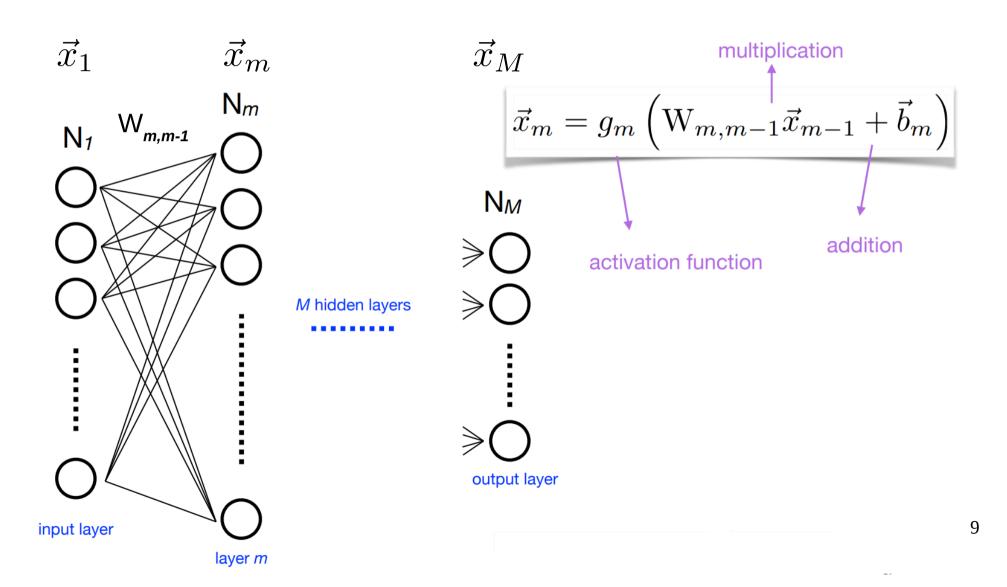
FPGAs

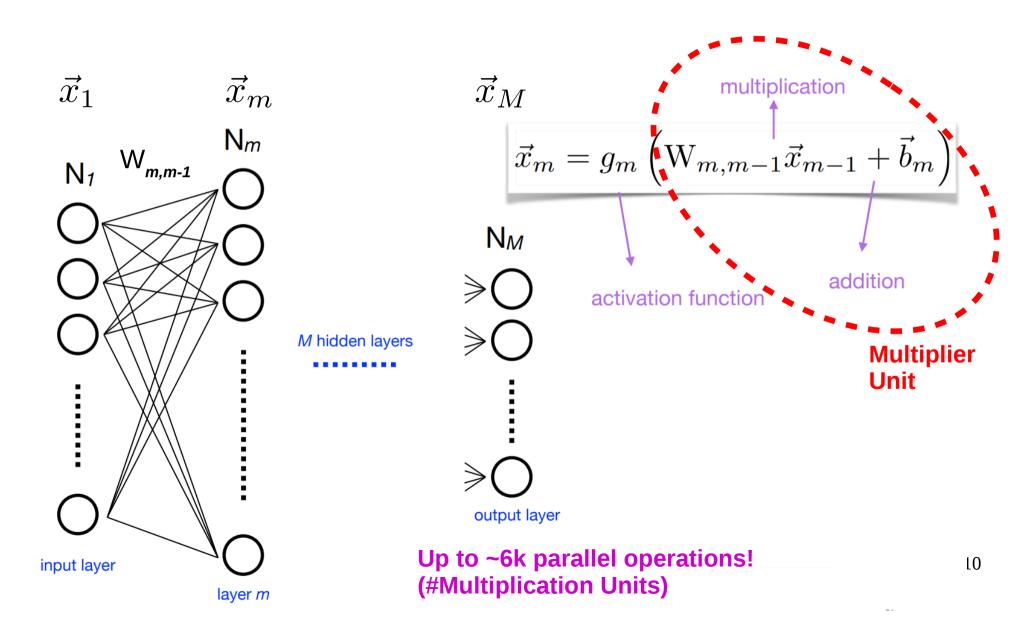
- Field-programmable gate arrays are a common solution for fast-computing
 - Ability to re-program for target needs is very appealing
- Building blocks:
 - Multiplier units (DPSs) [arithmetic]
 - Look Up Tables (LUTs) [logic]
 - Flip-flops (FFs) [registers]
 - Block RAMs (BRAMs) [memory]
- · Algorithms are wired onto the chip
- Run at high frequency O(100 MHz)
 - Can compute outputs in O(ns)
- Programming traditionally done in Verilog/VHDL
 - Low-level hardware languages
- Possible to translate C to Verilog/VHDL using High Level Synthesis (HLS) tools

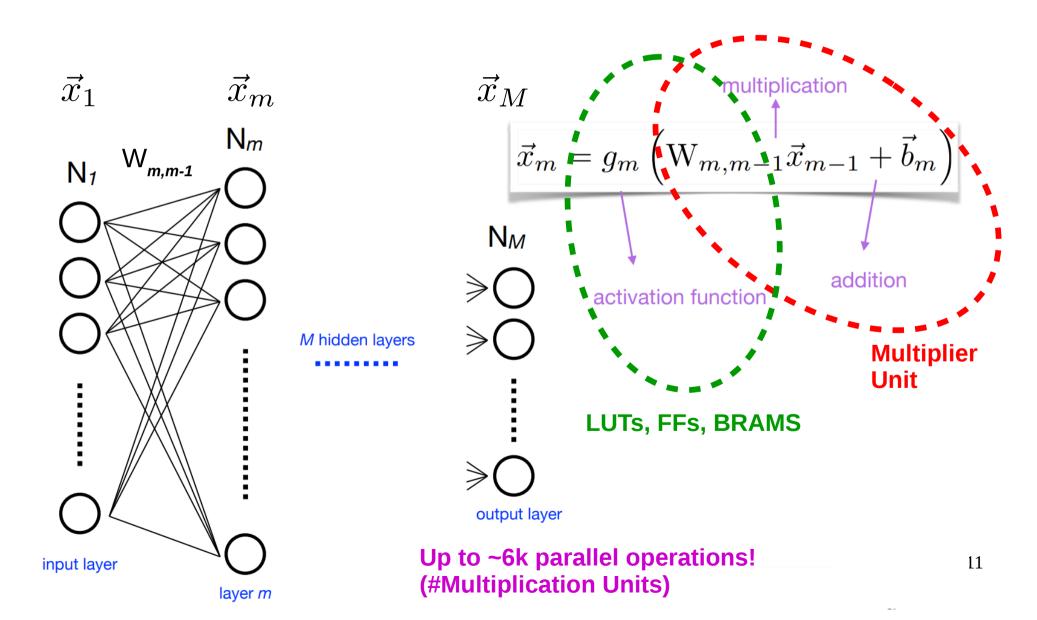
Virtex 7 XC7VX690T 3600 Multipliers 400K LUTs 800K FFs 10 Mb BRAM Virtex Ultrascale+ VU9P 6800 Multipliers 1M LUTs 2M FFs 75 Mb BRAM

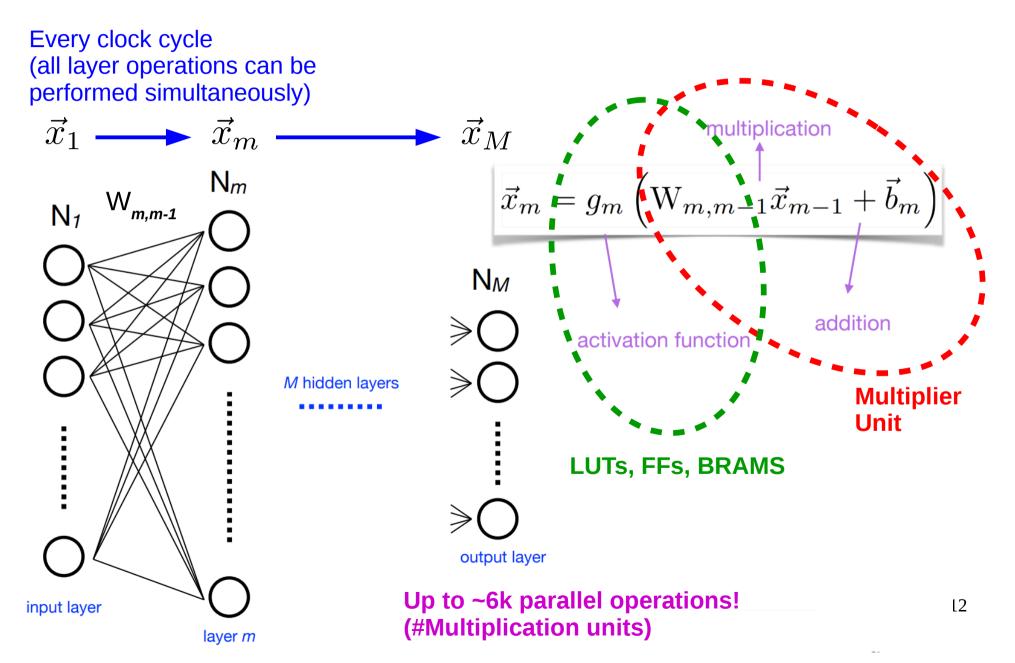


8





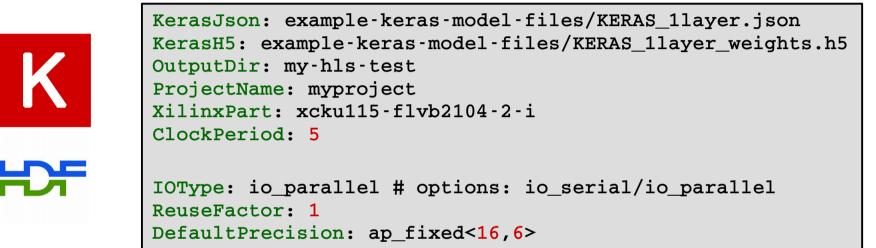




- *h1s4m1* is a software package for creating HLS implementations of neural networks
 - https://hls-fpga-machine-learning.github.io/hls4ml/
- Supports common layer architectures and model software
- Highly customizable output for different latency and size needs
- Simple workflow to allow quick translation to HLS

Project Configuration (Keras)

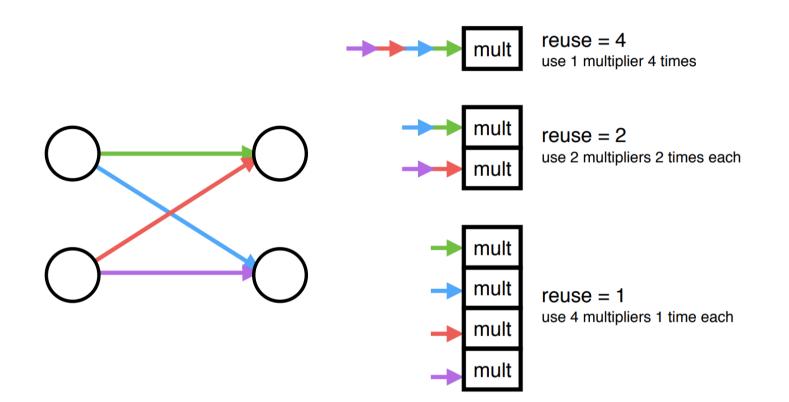
keras-config.yml



- Configuration file takes model architecture and weights files as input
- Main customization options:
 - ReuseFactor: calculations per multiplier per layer (parallelization)
 - DefaultPrecision: used for inputs, weights, biases

python keras-to-hls.py -c keras-config.yml

Customization: Reuse



- For lowest latency, compute all multiplications for a given layer at once
 - Reuse = 1 (fully parallel) \rightarrow latency \approx # layers
- Larger reuse implies more serialization
 - Reuse = # weights (fully serialized) \rightarrow latency = (# weights) x (# layers)
- Allows trading higher latency for lower resource usage

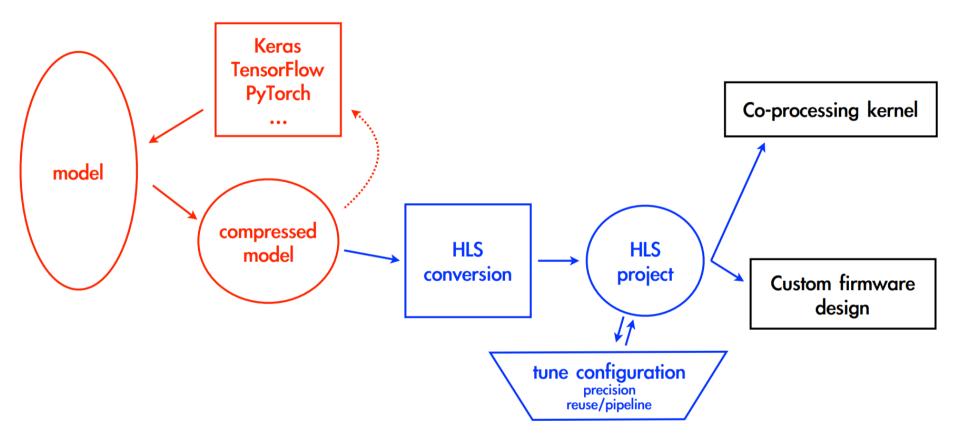
Customization: Precision

 hls4ml uses fixed point classes for all computations

ap_fixed<width,integer>
0101.1011101010
integer
fractional
width

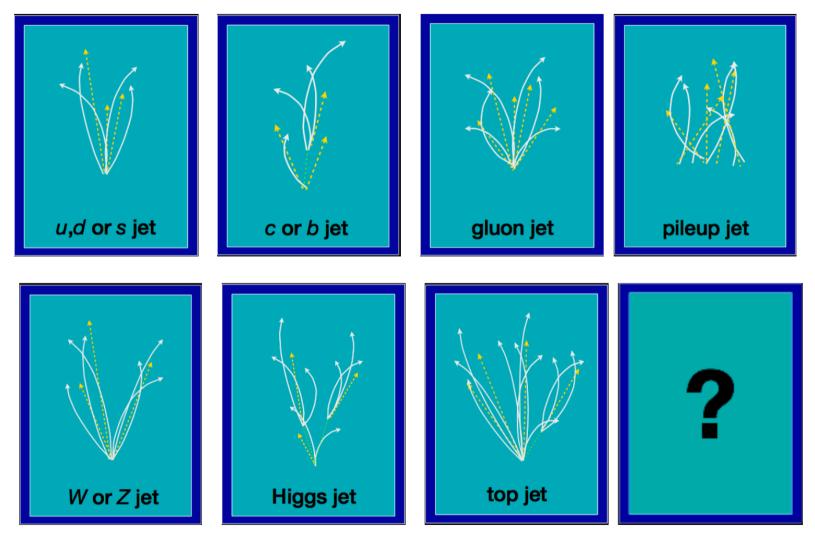
- Precision can be adjusted as needed for desired accuracy, performance
 - Also impacts resource usage
- Default behavior is to use same precision for all layers

Design Workflow



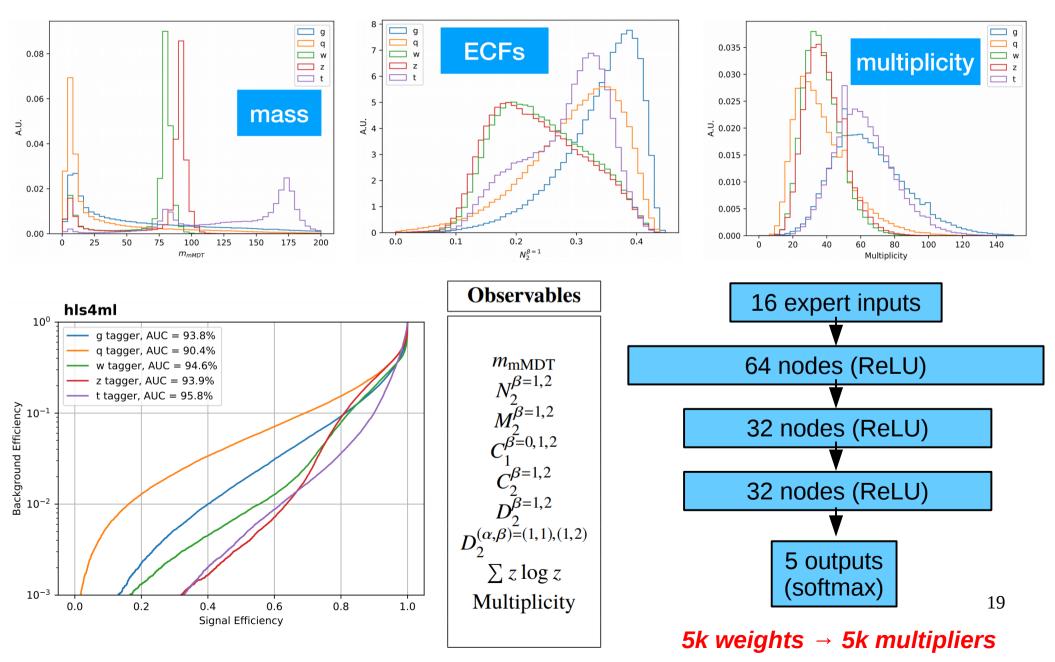
- Design model with standard software tools (Keras, Tensorflow, PyTorch)
- Pass network architecture and weights/biases along with configuration parameters to h1s4m1 (creates HLS project)
- Interface HLS code with desired project

Jet Classification Example



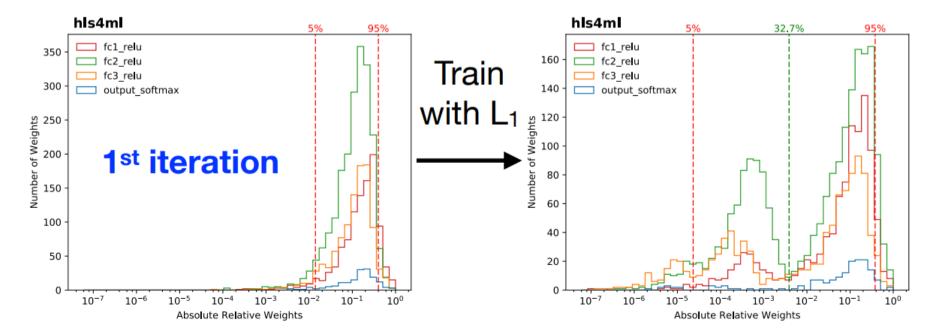
- Perhaps an unrealistic example for L1 trigger, lessons are useful
- Problem certainly a clear candidate for ML usage

Example Network



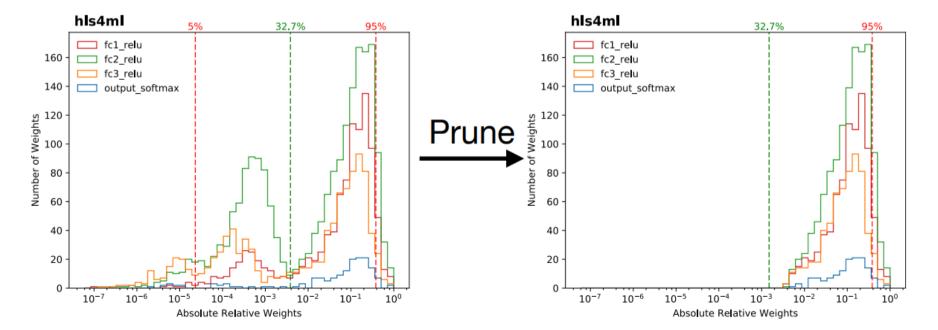
- Compression
 - Removing nodes or connections from network
- To identify redundant connections, we use a method of successive retraining and weight minimization (pruning)
 - Use L1 regularization, modify loss function with penalty term for large weights
 - Remove smallest weights
 - Repeat
- HLS automatically removes multiplications by 0!

$$L_{\lambda}(\mathbf{w}) = L(\mathbf{w}) + \lambda \|\mathbf{w}\|$$



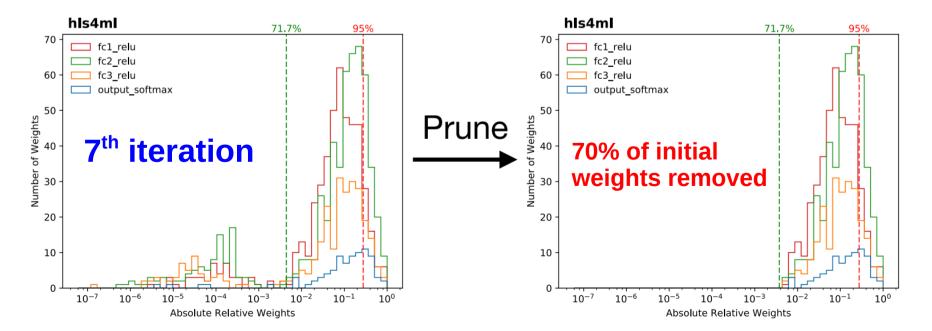
- Compression
 - Removing nodes or connections from network
- To identify redundant connections, we use a method of successive retraining and weight minimization (pruning)
 - Use L1 regularization, modify loss function with penalty term for large weights
 - Remove smallest weights
 - Repeat
- HLS automatically removes multiplications by 0!

$$L_{\lambda}(\mathbf{w}) = L(\mathbf{w}) + \lambda \|\mathbf{w}\|$$

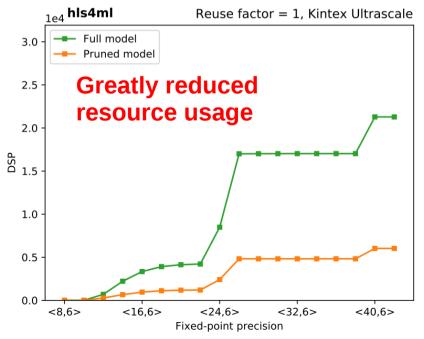


- Compression
 - Removing nodes or connections from network
- To identify redundant connections, we use a method of successive retraining and weight minimization (pruning)
 - Use L1 regularization, modify loss function with penalty term for large weights
 - Remove smallest weights
 - Repeat
- HLS automatically removes multiplications by 0!

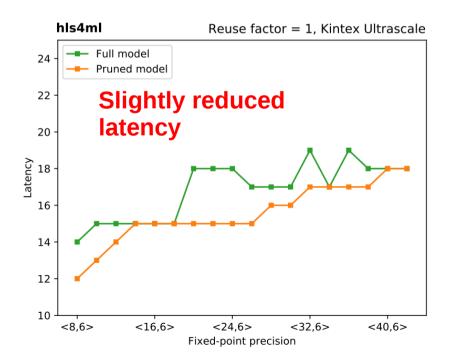
$$L_{\lambda}(\mathbf{w}) = L(\mathbf{w}) + \lambda \|\mathbf{w}\|$$



- Compression
 - Removing nodes or connections from network
- To identify redundant connections, we use a method of successive retraining and weight minimization (pruning)
 - Use L1 regularization, modify loss function with penalty term for large weights
 - Remove smallest weights
 - Repeat
- HLS automatically removes multiplications by 0!

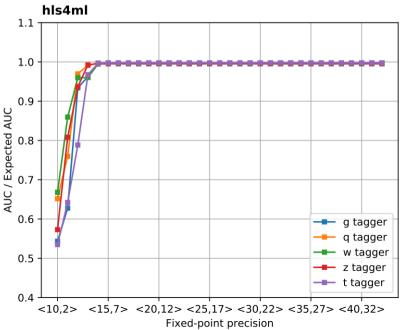


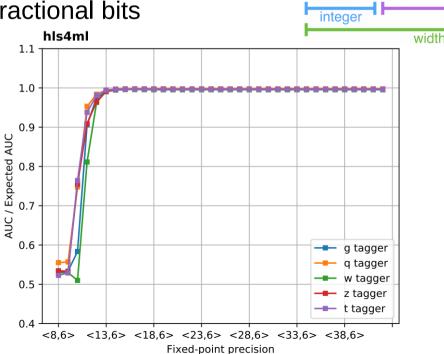
$$L_{\lambda}(\mathbf{w}) = L(\mathbf{w}) + \lambda \|\mathbf{w}\|$$



Reducing Network Size: Quantization

- **Quantization**
 - Reducing the bit precision used for NN arithmetic
- Software assumes all computations performed with floating point arithmetic
 - Not always necessary for desired performance
- Reduction of precision automatically zeros very small weights ($w < 2^{-fractional}$)
 - Also reduces resources needs to compute/store multiplications and intermediate layers
- Full performance at 8 integer bits, 8 fractional bits





24

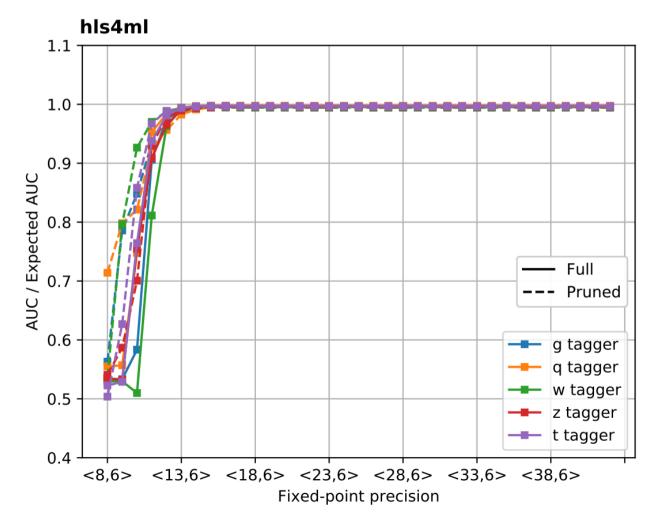
ap_fixed<width,integer>

0101.1011101010

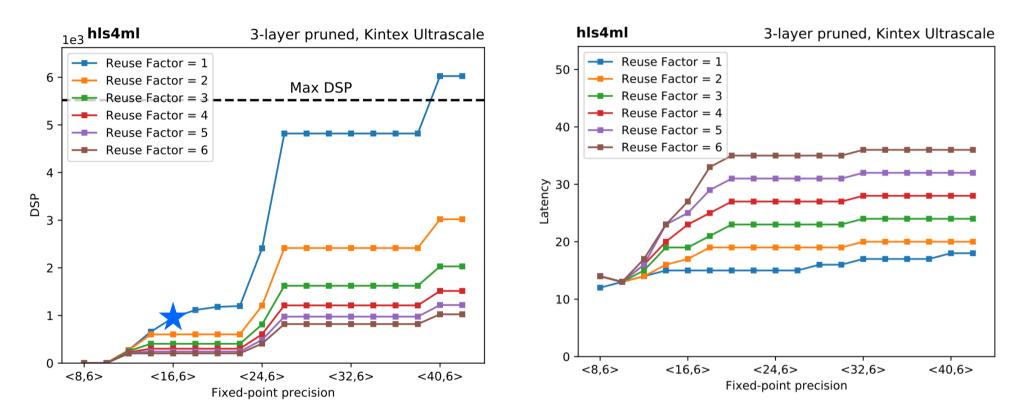
fractional

Network Tuning

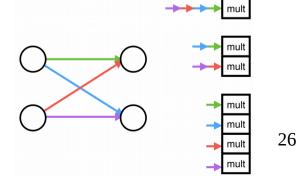
• Compression & quantization can be used together, maintain full performance



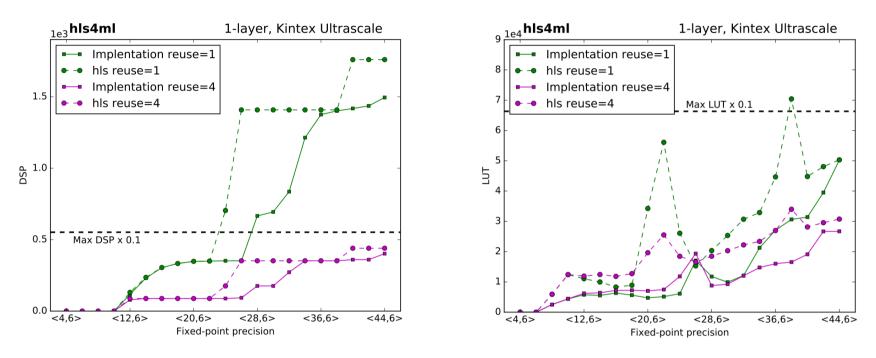
Network Tuning: Reuse



- Reduces multiplier usage at the cost of increasing latency (and initiation interval)
 - Scales as expected
- Minimal effect of reuse on LUTs and FFs
- For reuse = 1, <16,6> precision, find total resource usage well below available resources for target FPGA (KU115)



Synthesis vs. Implementation



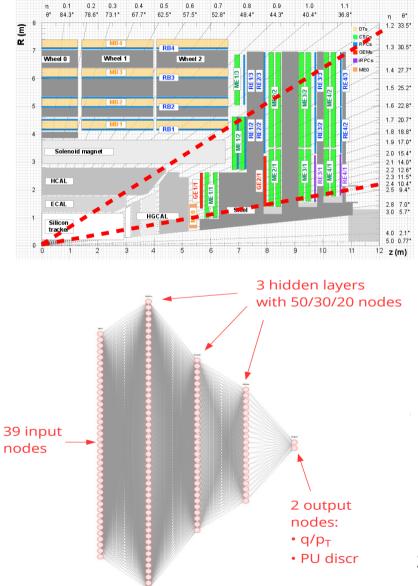
- All previous results come from HLS synthesis estimates
- Known differences between HLS estimates and final implementation
- For slightly smaller model (this slide):
 - FF/LUT overestimated in most cases
 - Multipliers accurate below max width of multiplier input, overestimated above
- Also able to meet timing constraints

Under Development

- Large amount of ongoing development with hls4ml
- Expanding tool capabilities
 - Working on adding full support for:
 - Conv1D and Conv2D layers (partial support)
 - LSTM/GRU (testing)
 - Graph neural networks (prototyping)
 - Binary/ternary dense networks (partial support)
 - Pooling (prototyping)
 - Boosted decision trees (testing)
 - Working on ability to handle larger networks
 - Stay tuned for updates!
- Multiple potential use cases for LHC trigger systems

ML in the CMS Trigger

- CMS endcap muon trigger uses BDT for muon p_{τ} assignment
 - Large DRAM bank on-board to implement LUT
- Work ongoing to investigate replacing BDT with DNN
 - Developing with hls4ml
 - CPAD 2018 Talk
- Can use two output nodes to simultaneously do $p_{\rm T}$ assignment and PU discrimination
- Implementation fits comfortably in a VU9P
 - Algorithm latency is 72 ns
 - 41% DSP usage
- Also work done for CMS trigger upgrade using hls4ml for tau lepton ID
 - Range of additional applications for particle ID



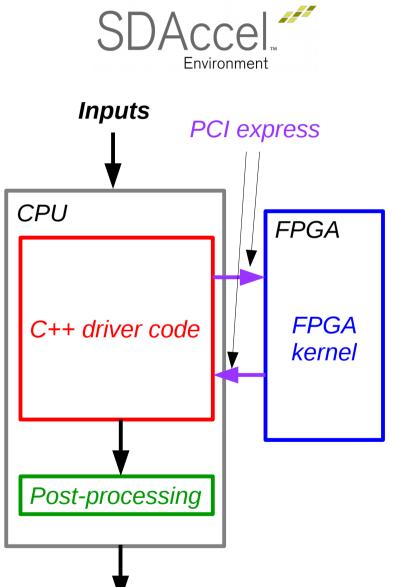
Co-processors

- Increasing popularity of co-processor systems
 - CPU connected to a FPGA/GPU/TPU
 - Common setup for FPGA connects to CPU through PCI-express
- Allows algorithms to run on the most optimized hardware ("acceleration")
- FPGA-CPU co-processor machines are available as an offering on Amazon Web Services (AWS)
 - F1 instances (connected to a Virtex Ultrascale+ VU9P) can be used to explore possibilities for accelerated inference



Acceleration with AWS

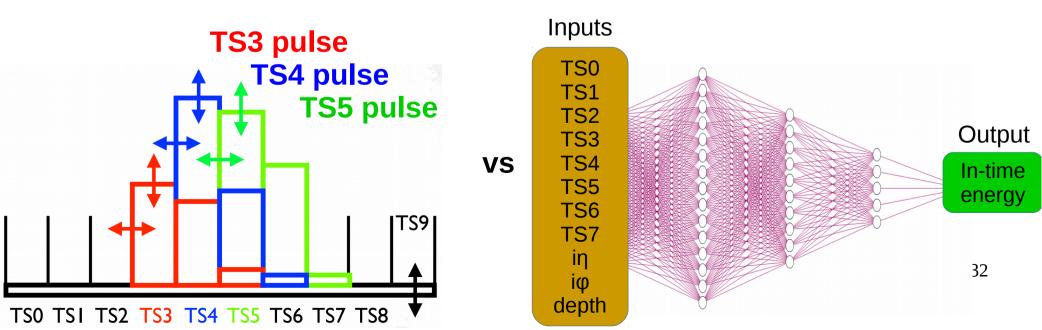
- Development for FPGA kernel and CPU host code is done with SDAccel environment
 - Invokes Vivado HLS under the hood, produces traditional synthesis reports etc.
- Run host code on CPU, manages data transfer and FPGA kernel execution
- hls4ml project only needs to be wrapped to provide specific inputs/outputs for SDAccel to interface properly
 - Can be done generically
 - Have accelerated variety of hls4ml projects on AWS F1
- Limited in speed by I/O bandwidth



Outputs

An Acceleration Case Study (1)

- HCAL reconstruction at CMS currently uses an iterative fit to extract in-time energy
 - 15% of HLT processing time
- Similar procedure used for ECAL reconstruction
 - 10% of HLT processing time
- Situation expected to worsen in more intense conditions
- We have begun investigating machine learning alternatives
 - Similar inputs to current algorithm (energies + $\eta/\phi/depth$)
 - Comparable performance with simple network (3 layers, 15/10/5 nodes)



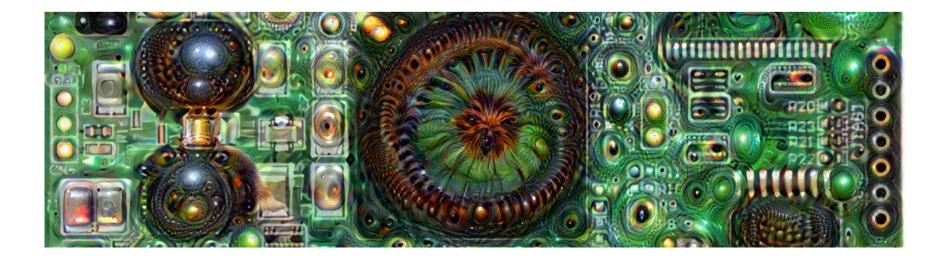
An Acceleration Case Study (2)

- Have successfully implemented/run the network inference on AWS using hls4ml/SDAccel
- https://github.com/drankincms/AccelFPGA
- Including data transfer to/from CPU, whole FPGA inference process takes 2 ms for all 16k HCAL channels
 - Inference alone takes 80 us (70 ns for one inference)
- Has been tested inside standard CMS software code environment, using highlevel trigger job
 - Every event sends input features to FPGA, waits for callback
- Iterative fit procedure takes 50 ms for same inputs
- FPGA inference is a fixed-latency procedure, iterative fit is not
- Inference on CPU or GPU also significantly faster than iterative fit
 - FPGA inference fastest

<u>Algorithm</u>	<u>Architecture</u>	<u>Time/event</u> (ms)
lterative fit	CPU	50
NN Inference	CPU	15
NN Inference	GPU	12
NN Inference	FPGA	2

hls 4 ml /SDAccel Workshop

- Organized workshop for hls4ml and acceleration last week
 - How to do ultrafast DNN inference on FPGAs
 - https://indico.cern.ch/event/769727/
- Lots of interest in across many HEP experiments, industry
 - 90 participants
- By the end of the course all participants were able to actually run inference on FPGAs
 - Used AWS to provide machines for development/acceleration
- Interested in replicating workshop at other locations



Workshop Program

- First part:
 - Understand the hls4ml package, its functionalities and design synthesis by running with one of the provided trained NN
 - Learn how to read out an estimate of FPGA resources and latency for a NN after synthesis
 - Learn how to optimize the design with quantization and parallelization
- Second part:
 - Learn how to export the HLS design to firmware with SDAccel
- Third part:
 - Learn how to do model compression and its effect on the FPGA resources/latency
- Fourth part:
 - Learn how to accelerate NN inference firmware on a real FPGA (provided on Amazon cloud) with SDAccel
 - Timing and resources studies after running on real FPGA

Microsoft Brainwave

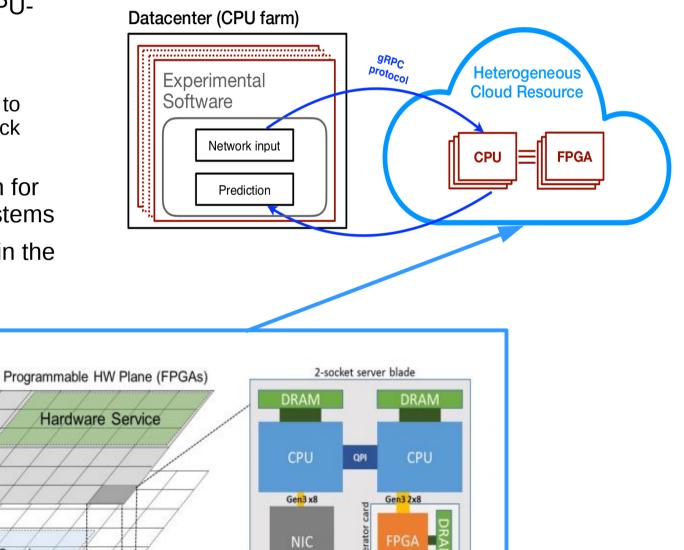
- Microsoft Brainwave is a CPU-FPGA server farm
- ML offered "as a service"
 - Send a preprocessed image to Brainwave, get prediction back from ResNet50
- Extremely interesting option for longer latency (>10 ms) systems
- Stay tuned for another talk in the future

Cluster Switch

Programmable SW Plane (CPUs)

TOR

Software Service



QSFP QSFP

40Gb/s

40Gb/s

Switch

Outlook (1)

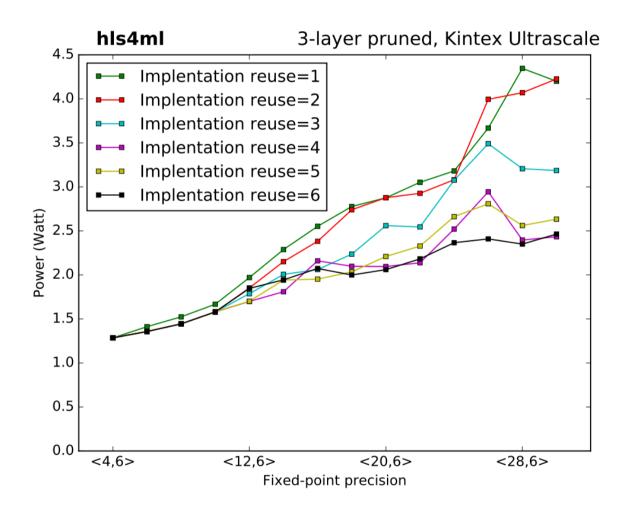
- Machine learning is becoming increasingly widely used for complex problems
 - Not only in physics but also industry
- Some of the most challenging problems in HEP exist in the trigger
 - Even with a machine learning solution, still need to be able to perform inference very fast → FPGAs
- hls4ml provides the ability to implement very low latency machine learning solutions on FPGAs with a high degree of customization
 - Can adjust configuration of implementation for desired resource usage, latency, and accuracy

Outlook (2)

- Have utilized hls4ml already to enable fast machine learning solutions in CMS trigger
 - Ex. muon p_{τ} assignment, tau identification, others
- Improvements in fast inference need not be limited to traditionally FPGA-based systems
 - Ex. large potential improvement in processing time for HCAL
 - Could envision using accelerator cards during offline processing or HLT
- Usage not restricted only to CMS trigger, many other possibilities for use of fast ML
- Growing list of collaborators:
 - Jennifer Ngadiuba, Vladimir Loncar, Maurizio Pierini [CERN] Giuseppe Di Guglielmo [Columbia University] Javier Duarte, Burt Holzman, Sergo Jindariani, Ben Kreis, Mia Liu, Kevin Pedro, Ryan Rivera, Nhan Tran, Aristeidis Tsaris [Fermilab] Edward Kreinar [HawkEye 360] Sioni Summers [Imperial College London] Song Han, Phil Harris, Dylan Rankin [MIT] Zhenbin Wu [UIC] Scott Hauk, Shih-Chieh Hsu, Dustin Warren, Risha Rao [UW] Mark Neubauer, Markus Atkinson [UIUC]

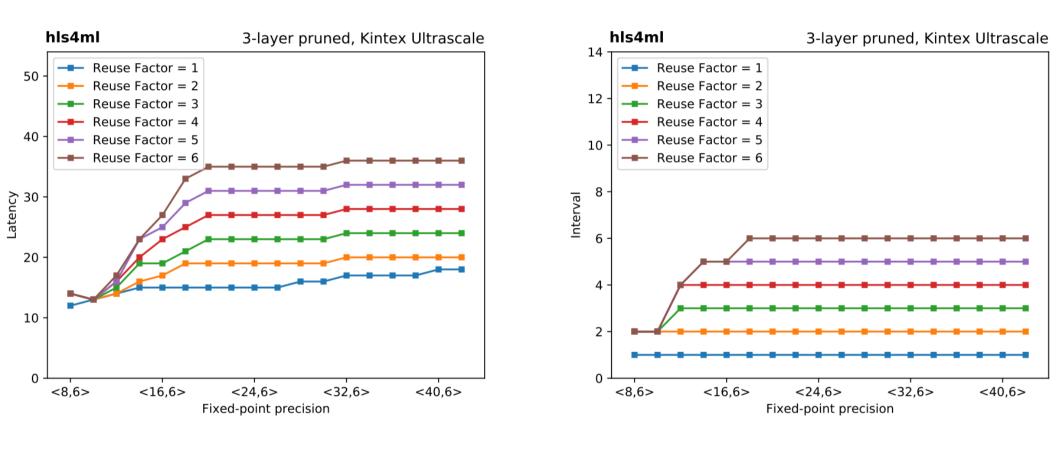
BACKUP

Power Usage

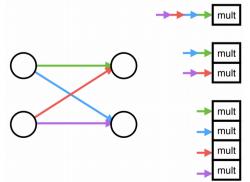


Reuse also improves power consumption

Example Tuning: Reuse

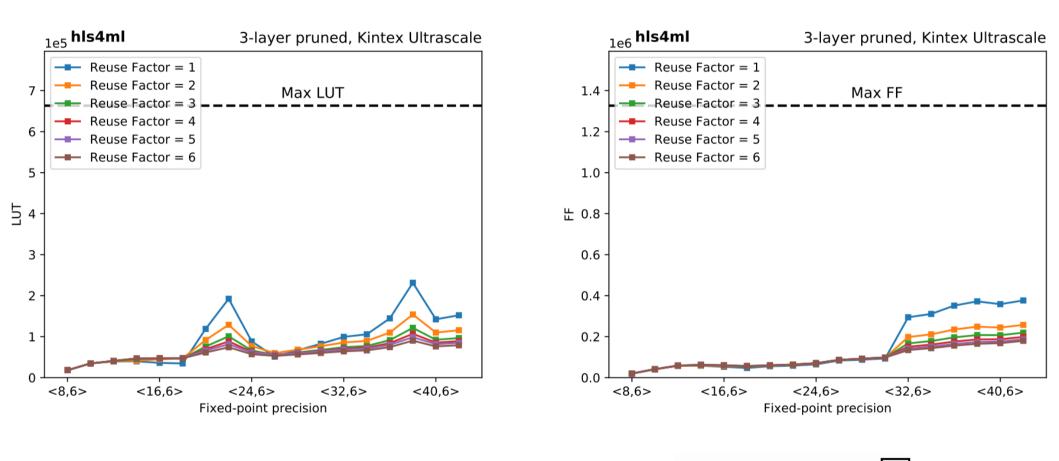


• Can tune reuse factor in hls4ml configuration

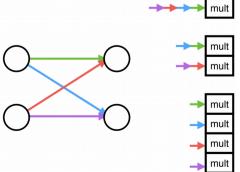


41

Example Tuning: Reuse

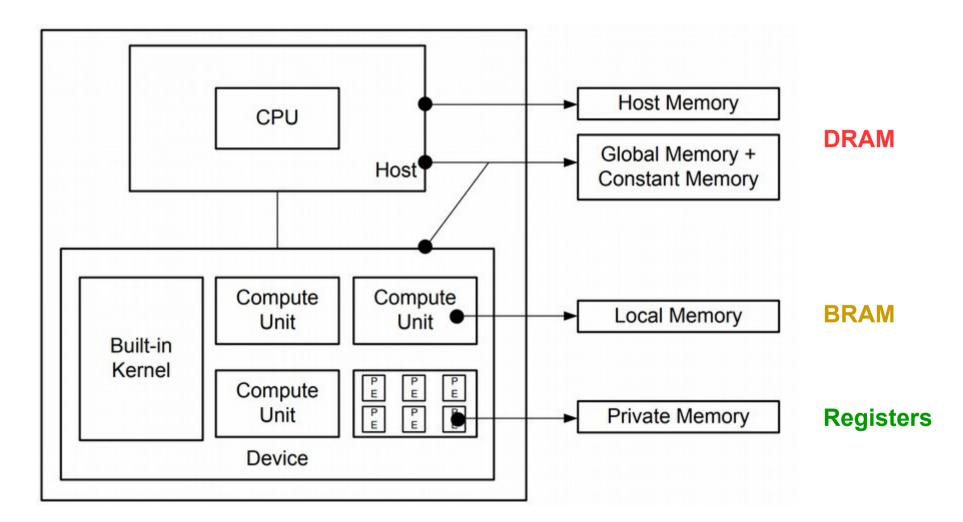


• Can tune reuse factor in hls4ml configuration



42

SDAccel Dataflow



Multiple different memory management options

Acceleration with Xilinx xDNN

- Have also investigated Xilinx xDNN package for acceleration of large convolutional networks
 - Connection between CPU and FPGA with PCI-express as before
 - Major latency comes in xDNN setup (loading weights)
 - Can batch inputs: allows reuse of loaded weights, only costs additional few ms per image
- Some similarities with Microsoft Brainwave
- Major difference is that xDNN/AWS lacks an "as a service" offering

