
Using Machine Learning
on FPGAs to Enhance
Reconstruction Output

Dylan Rankin [MIT]
On behalf of the hls4ml team

IRIS-HEP
Febraury 13th, 2019

2

Introduction

● Machine learning has become a common tool for broad spectrum of
problems (industry & physics)
– Particle/signal identification

– Image/speech recognition

● Meanwhile, field-programmable gate arrays (FPGAs) have been used for
decades to provide fast computing solutions
– Development typically requires large initial investment (learning VHDL/Verilog,

hardware cost)

– Complex algorithms can be very difficult to implement

● hls4ml is a tool which facilitates implementing machine learning on FPGAs
for fast inference [arXiv:1804.06913]
– Provides possibility for highly customizable solutions to many HEP trigger problems

https://arxiv.org/abs/1804.06913

3

Machine Learning

● Machine learning algorithms, especially deep neural networks, are becoming more
and more common in HEP
– Esp. LHC, neutrinos

● Provides capability to analyze very complex problems in straightforward way
● Very good performance even for difficult tasks
● Networks can become very large → long inference times

BDT

DNN

DeepAK8 (top-tagging)

CMS-DP-2018-046

4

Neural Network

W
m,m-1

● Start with input vector (x1)

● Using weight matrix (W), bias
vector (b), and activation
function (g), transform input
vector to intermediate result
vector (xm)
– Can be repeated many times

● Last layer provides output
vector

5

● Start with input vector (x1)

● Using weight matrix (W), bias
vector (b), and activation
function (g), transform input
vector to intermediate result
vector (xm)
– Can be repeated many times

● Last layer provides output
vector

Neural Network

W
m,m-1

VGG16

Can have 100s of millions of parameters

6

LHC Data Processing

● L1 Trigger (hardware: FPGAs)
– O(μs) hard latency. Typically coarse selection, BDT used for muon pT assignment

● HLT (software: CPUs)
– O(100 ms) soft latency. More complex algorithms (full detector information

available), some BDTs and DNNs used

● Offline (software: CPUs)
– > 1 s latencies. Full event reconstruction, bulk of machine learning usage in CMS

7

LHC Data Processing

● DNNs have the potential to greatly improve physics performance in
the trigger system

● In order to implement an algorithm, need to ensure inference
latencies of μs (ms) for L1 (HLT)
– For L1, this means we must use FPGAs

● How can we run neural network inference quickly on an FPGA?

8

FPGAs

● Field-programmable gate arrays are a common solution for fast-computing
– Ability to re-program for target needs is very appealing

● Building blocks:
– Multiplier units (DPSs) [arithmetic]

– Look Up Tables (LUTs) [logic]

– Flip-flops (FFs) [registers]

– Block RAMs (BRAMs) [memory]

● Algorithms are wired onto the chip
● Run at high frequency - O(100 MHz)

– Can compute outputs in O(ns)

● Programming traditionally done in Verilog/VHDL
– Low-level hardware languages

● Possible to translate C to Verilog/VHDL using
High Level Synthesis (HLS) tools

Virtex Ultrascale+ VU9P
6800 Multipliers

1M LUTs
2M FFs

75 Mb BRAM

Virtex 7 XC7VX690T
3600 Multipliers

400K LUTs
800K FFs

10 Mb BRAM

9

W
m,m-1

Inference on an FPGA

10

W
m,m-1

Inference on an FPGA

Multiplier
Unit

Up to ~6k parallel operations!
(#Multiplication Units)

11

W
m,m-1

Inference on an FPGA

LUTs, FFs, BRAMS

Multiplier
Unit

Up to ~6k parallel operations!
(#Multiplication Units)

12

W
m,m-1

Every clock cycle
(all layer operations can be
performed simultaneously)

Up to ~6k parallel operations!
(#Multiplication units)

Inference on an FPGA

LUTs, FFs, BRAMS

Multiplier
Unit

13

● hls4ml is a software package for creating HLS
implementations of neural networks
– https://hls-fpga-machine-learning.github.io/hls4ml/

● Supports common layer architectures and model
software

● Highly customizable output for different latency
and size needs

● Simple workflow to allow quick translation to HLS

https://hls-fpga-machine-learning.github.io/hls4ml/

14

Project Configuration (Keras)

● Configuration file takes model architecture and weights files as
input

● Main customization options:
– ReuseFactor: calculations per multiplier per layer (parallelization)

– DefaultPrecision: used for inputs, weights, biases

KerasJson: examplekerasmodelfiles/KERAS_1layer.json
KerasH5: examplekerasmodelfiles/KERAS_1layer_weights.h5
OutputDir: myhlstest
ProjectName: myproject
XilinxPart: xcku115flvb21042i
ClockPeriod: 5

IOType: io_parallel # options: io_serial/io_parallel
ReuseFactor: 1
DefaultPrecision: ap_fixed<16,6>

python kerastohls.py c kerasconfig.yml

keras-config.yml

15

Customization: Reuse

● For lowest latency, compute all multiplications for a given layer at once
– Reuse = 1 (fully parallel) → latency ≈ # layers

● Larger reuse implies more serialization
– Reuse = # weights (fully serialized) → latency = (# weights) x (# layers)

● Allows trading higher latency for lower resource usage

16

Customization: Precision

● hls4ml uses fixed point classes for all
computations

● Precision can be adjusted as needed for desired
accuracy, performance
– Also impacts resource usage

● Default behavior is to use same precision for all
layers

17

Design Workflow

● Design model with standard software tools (Keras, Tensorflow, PyTorch)
● Pass network architecture and weights/biases along with configuration

parameters to hls4ml (creates HLS project)

● Interface HLS code with desired project

18

Jet Classification Example

● Perhaps an unrealistic example for L1 trigger, lessons are useful
● Problem certainly a clear candidate for ML usage

19

Example Network

16 expert inputs

64 nodes (ReLU)

32 nodes (ReLU)

5 outputs
(softmax)

32 nodes (ReLU)

5k weights → 5k multipliers

20

Reducing Network Size:
Compression

● Compression
– Removing nodes or connections from network

● To identify redundant connections, we use a method of successive retraining and weight
minimization (pruning)
– Use L1 regularization, modify loss function with penalty term for large weights
– Remove smallest weights
– Repeat

● HLS automatically removes
multiplications by 0!

21

Reducing Network Size:
Compression

● Compression
– Removing nodes or connections from network

● To identify redundant connections, we use a method of successive retraining and weight
minimization (pruning)
– Use L1 regularization, modify loss function with penalty term for large weights
– Remove smallest weights
– Repeat

● HLS automatically removes
multiplications by 0!

22

Reducing Network Size:
Compression

7th iteration 70% of initial
weights removed

● Compression
– Removing nodes or connections from network

● To identify redundant connections, we use a method of successive retraining and weight
minimization (pruning)
– Use L1 regularization, modify loss function with penalty term for large weights
– Remove smallest weights
– Repeat

● HLS automatically removes
multiplications by 0!

23

Reducing Network Size:
Compression

Greatly reduced
resource usage

Slightly reduced
latency

● Compression
– Removing nodes or connections from network

● To identify redundant connections, we use a method of successive retraining and weight
minimization (pruning)
– Use L1 regularization, modify loss function with penalty term for large weights
– Remove smallest weights
– Repeat

● HLS automatically removes
multiplications by 0!

24

Reducing Network Size:
Quantization

● Quantization
– Reducing the bit precision used for NN arithmetic

● Software assumes all computations performed with floating point arithmetic
– Not always necessary for desired performance

● Reduction of precision automatically zeros very small weights (w < 2 -fractional)
– Also reduces resources needs to compute/store

multiplications and intermediate layers

● Full performance at 8 integer bits, 8 fractional bits

25

Network Tuning

● Compression & quantization can be used
together, maintain full performance

26

Network Tuning: Reuse

● Reduces multiplier usage at the cost of increasing latency
(and initiation interval)
– Scales as expected

● Minimal effect of reuse on LUTs and FFs
● For reuse = 1, <16,6> precision, find total resource usage

well below available resources for target FPGA (KU115)

27

Synthesis vs. Implementation

● All previous results come from HLS synthesis estimates
● Known differences between HLS estimates and final implementation
● For slightly smaller model (this slide):

– FF/LUT – overestimated in most cases

– Multipliers – accurate below max width of multiplier input, overestimated above

● Also able to meet timing constraints

28

Under Development

● Large amount of ongoing development with hls4ml

● Expanding tool capabilities
– Working on adding full support for:

● Conv1D and Conv2D layers (partial support)
● LSTM/GRU (testing)
● Graph neural networks (prototyping)
● Binary/ternary dense networks (partial support)
● Pooling (prototyping)
● Boosted decision trees (testing)

– Working on ability to handle larger networks

– Stay tuned for updates!

● Multiple potential use cases for LHC trigger systems

29

ML in the CMS Trigger

● CMS endcap muon trigger uses BDT for
muon pT assignment
– Large DRAM bank on-board to implement

LUT

● Work ongoing to investigate replacing
BDT with DNN
– Developing with hls4ml

– CPAD 2018 Talk

● Can use two output nodes to
simultaneously do pT assignment and PU
discrimination

● Implementation fits comfortably in a VU9P
– Algorithm latency is 72 ns

– 41% DSP usage

● Also work done for CMS trigger upgrade
using hls4ml for tau lepton ID
– Range of additional applications for particle

ID

https://indico.fnal.gov/event/18104/session/23/contribution/71/material/0/0.pdf

30

Co-processors

● Increasing popularity of co-processor systems
– CPU connected to a FPGA/GPU/TPU

– Common setup for FPGA connects to CPU through PCI-express

● Allows algorithms to run on the most optimized hardware
(“acceleration”)

● FPGA-CPU co-processor machines are available as an
offering on Amazon Web Services (AWS)
– F1 instances (connected to a Virtex Ultrascale+ VU9P) can be

used to explore possibilities for accelerated inference

31

Acceleration with AWS

● Development for FPGA kernel and CPU
host code is done with SDAccel
environment
– Invokes Vivado HLS under the hood, produces

traditional synthesis reports etc.

● Run host code on CPU, manages data
transfer and FPGA kernel execution

● hls4ml project only needs to be wrapped
to provide specific inputs/outputs for
SDAccel to interface properly
– Can be done generically

– Have accelerated variety of hls4ml projects on
AWS F1

● Limited in speed by I/O bandwidth

Inputs

Outputs

CPU

C++ driver code

Post-processing

FPGA
kernel

PCI express

FPGA

32

An Acceleration Case Study (1)

● HCAL reconstruction at CMS currently uses an iterative fit to extract in-time energy
– 15% of HLT processing time

● Similar procedure used for ECAL reconstruction
– 10% of HLT processing time

● Situation expected to worsen in more intense conditions
● We have begun investigating machine learning alternatives

– Similar inputs to current algorithm (energies + η/φ/depth)

– Comparable performance with simple network (3 layers, 15/10/5 nodes)

TS3 pulse
 TS4 pulse
 TS5 pulse

TS0
TS1
TS2
TS3
TS4
TS5
TS6
TS7
iη
iφ

depth

In-time
energy

Inputs

Output
vs

33

An Acceleration Case Study (2)

● Have successfully implemented/run the network inference on AWS using
hls4ml/SDAccel

● https://github.com/drankincms/AccelFPGA
● Including data transfer to/from CPU, whole FPGA inference process takes 2 ms

for all 16k HCAL channels
– Inference alone takes 80 us (70 ns for one inference)

● Has been tested inside standard CMS software code environment, using high-
level trigger job
– Every event sends input features to

FPGA, waits for callback

● Iterative fit procedure takes 50 ms
for same inputs

● FPGA inference is a fixed-latency
procedure, iterative fit is not

● Inference on CPU or GPU also
significantly faster than iterative fit
– FPGA inference fastest

Algorithm Architecture Time/event
(ms)

Iterative
fit

CPU 50

NN
Inference

CPU 15

NN
Inference

GPU 12

NN
Inference

FPGA 2

https://github.com/drankincms/AccelFPGA

34

 /SDAccel Workshop

● Organized workshop for hls4ml and acceleration last week
– How to do ultrafast DNN inference on FPGAs

– https://indico.cern.ch/event/769727/

● Lots of interest in across many HEP experiments, industry
– 90 participants

● By the end of the course all participants were able to actually run inference on FPGAs
– Used AWS to provide machines for development/acceleration

● Interested in replicating workshop at other locations

https://indico.cern.ch/event/769727/

35

Workshop Program

● First part:
– Understand the hls4ml package, its functionalities and design synthesis by running

with one of the provided trained NN

– Learn how to read out an estimate of FPGA resources and latency for a NN after
synthesis

– Learn how to optimize the design with quantization and parallelization

● Second part:
– Learn how to export the HLS design to firmware with SDAccel

● Third part:
– Learn how to do model compression and its effect on the FPGA resources/latency

● Fourth part:
– Learn how to accelerate NN inference firmware on a real FPGA (provided on

Amazon cloud) with SDAccel

– Timing and resources studies after running on real FPGA

36

Microsoft Brainwave
● Microsoft Brainwave is a CPU-

FPGA server farm
● ML offered “as a service”

– Send a preprocessed image to
Brainwave, get prediction back
from ResNet50

● Extremely interesting option for
longer latency (>10 ms) systems

● Stay tuned for another talk in the
future

37

Outlook (1)

● Machine learning is becoming increasingly widely used for complex
problems
– Not only in physics but also industry

● Some of the most challenging problems in HEP exist in the trigger
– Even with a machine learning solution, still need to be able to perform

inference very fast → FPGAs

● hls4ml provides the ability to implement very low latency
machine learning solutions on FPGAs with a high degree of
customization
– Can adjust configuration of implementation for desired resource usage,

latency, and accuracy

38

Outlook (2)

● Have utilized hls4ml already to enable fast machine learning solutions in CMS trigger
– Ex. muon pT assignment, tau identification, others

● Improvements in fast inference need not be limited to traditionally FPGA-based systems
– Ex. large potential improvement in processing time for HCAL

– Could envision using accelerator cards during offline processing or HLT

● Usage not restricted only to CMS trigger, many other possibilities for use of fast ML
● Growing list of collaborators:

– Jennifer Ngadiuba, Vladimir Loncar, Maurizio Pierini [CERN] Giuseppe Di Guglielmo
[Columbia University] Javier Duarte, Burt Holzman, Sergo Jindariani, Ben Kreis, Mia
Liu, Kevin Pedro, Ryan Rivera, Nhan Tran, Aristeidis Tsaris [Fermilab] Edward Kreinar
[HawkEye 360] Sioni Summers [Imperial College London] Song Han, Phil Harris,
Dylan Rankin [MIT] Zhenbin Wu [UIC] Scott Hauk, Shih-Chieh Hsu, Dustin Warren,
Risha Rao [UW] Mark Neubauer, Markus Atkinson [UIUC]

39

BACKUP

40

Power Usage

● Reuse also improves power consumption

41

Example Tuning: Reuse

● Can tune reuse factor in
hls4ml configuration

42

Example Tuning: Reuse

● Can tune reuse factor in
hls4ml configuration

43

SDAccel Dataflow

● Multiple different memory management options

DRAM

BRAM

Registers

44

Acceleration with Xilinx xDNN

● Have also investigated Xilinx
xDNN package for acceleration
of large convolutional networks
– Connection between CPU and

FPGA with PCI-express as before

– Major latency comes in xDNN
setup (loading weights)

– Can batch inputs: allows reuse of
loaded weights, only costs
additional few ms per image

● Some similarities with Microsoft
Brainwave

● Major difference is that
xDNN/AWS lacks an “as a
service” offering

Image preprocessing (~10 ms)
Depends on image size

Full xDNN execution (~400 ms)
Includes setup (load weights, etc.)

Inference (~3 ms)

Data transfer (~0.1 ms)

Fully Connected Layer (~2 ms)

Softmax Output Layer (~15 ms)

Data transfer (~0.1 ms)

Using GoogLeNet v1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

