Development of SOI Monolithic Pixel Detector for Fine Measurement of Space and Time SOFIST

K. Hara (Univ. Tsukuba) for SOIPIX Collaboration

SOFIST development:

U. Tsukuba: K. Hara, D. Yamauchi, R. Abe, S. Iwanami, H. Murayama, K. Watanabe KEK: T. Tsuboyama, M. Yamada, S. Ono, Y. Arai, Y. Ikegami, I. Kurachi, M. Togawa, J. Haba Tohoku U.: Li. Taohan

Project supported by JSPS Grant-in-Aid for Scientific Research on Innovative Areas (2013-2017)

OUTLINE

- **1. SOI PIXEL Sensor Development Introduction**
- **2. Highlights of Achievements**
- 3. SOFIST
 - > design & developments
 - SOFIST-1 position resolution
 - SOFIST-2 timestamp resolution
 - SOFIST-3 quick evaluation
- 4. SOFIST-4 3D stacking
- 5. Summary

SOI PIXEL DEVICES

K. Hara, US-Japan Science Program, March 2019, FNAL

4

HIGHLIGHT-2 (INTPIX4)

3D CT Imaging at KEK PF

- Sensor : INTPIX4 FZn, Backside Illumination
- HV: 200V, Integration Time: 1ms, ScanTime: 320ns/pix, 1000frame/event
- KEK PF, X-ray Energy: 9.5keV
- Took images for 0~180° at every 1 degree.

(by R. Nishimura, K. Hirano (KEK)

K. Hara, US-Japan Science Program, March 2019, FNAL

10.2x15.4mm

Integration

&global shutter

HIGHLIGHT-2 (INTPIX4)

INTPIX4: Computed Tomography with Syncrotron X-ray

(by R. Nishimura, K. Hirano (KEK)

3mm

D

INTPIX4: Computed Tomography with Syncrotron X-ray

(by R. Nishimura, K. Hirano (KEK)

HIGHLIGHT-1 (SOIPIX-PDD)

<u>New Sensor Structure:</u> <u>Pinned Depleted Diode</u> (SOIPIX-PDD)

K. I

Gain = 70 μV/e-Noise = 11.0 e-Dark Current = 57 pA/cm2 @-35°C

BO)

Chárge

Detector

n*

BNW

BN6

SOI Circuits

BN5 (Mask:BP2)

1-ch. p-ch

BP6

BPW

GND

HIGHLIGHT-1 (SOIPIX-PDD)

HIGHLIGHT-3 (FPIX2)

Tracking Resolution: High-Energy Beam test @Fermi National Accelerator Lab.

HIGHLIGHT-3 (FPIX2)

SOI Vertex Detector (FPIX, SOFIST)

Better than 1 μ m Position Resolution for high-energy charged particle is achieved first in the world ! Concurrent Timing Measurement with 1.2 1.0_Us resolution is also performed.

K. Hara, US-Japan Science Program, March 2019, FNAL

Detector	Pixel size	Resolution	
ATLAS Pix	13.75 μm	1.1 μm	
DEPFET	24 μm	1.4 μm	
SOFIST	20 µm	1.2 μm	
FPIX	8 μm	0.65 μm	

Ref.[21] ATLAS sensor, ATLAS-CONF-2013-005 Ref.[22] DEPFET detector, https://cds.cern.ch/record/1967037

(Kyoto U. etc.)

HIGHLIGHT-4 (XRPIX5)

XRPIX: Event Driven X-ray Astronomy Detector

HIGHLIGHT-4 (XRPIX5)

	Hitomi CCD	eROSITA pnCCD	XRPIX
Pixel Size	24 μ m	75 <i>μ</i> m	36 <i>μ</i> m
No. of Pixel	1200 x 1200	384 × 384	608 × 384
Depletion Thickness	200 μ m	450 <i>μ</i> m	300 <i>μ</i> m
Energy Resolution (@6.4keV)	165eV	150eV	<mark>156eV</mark> (Test Chip、1 pix)
Timing Resolution	4 sec	50 msec	
Anti Coincidence	Х	Х	0
Operating Temp.	-120°C	−95°C	−20°C

Energy resolution as good as CCD's Much faster! Muon veto possible

SOFIST SOI MONOLITHIC PIXEL DETECTOR FOR FINE MEASUREMENT OF SPACE AND TIME

Allows time and space point measurement Design specified to meet the requirements for the ILC experiment

~1300 beam bunches (every 554nsec)

ILC beam train

Main requirements:

- Position resolution <3um
- Low material <0.2%Xo/layer
- TID~1kGy/year
- NIEL $\sim 10^{11} n_{eq}/cm^2/year$

Readout between trains bunch ID highly preferred Power dissipation: <50mW/cm²

The goal is a sensor with both good spatial resolution of <3um and time resolution <1us.

- ✓ pixel size ~20um-sq with analog readout
- timestamp recording the ramping voltage
- ✓ store the data allowing multiple hits on the same pixel
- ✓ on-chip ADCs &zero-suppression for fast data transfer

SOFIST PIXEL ARCHITECTURE

SOFIST – IN DEVELOPMENT

	MX1850	MX2040	MX2166	
SOFIST	ver.1	ver.2	ver.3	ver.4 (3D)
	FNAL Beamtested (only analog)	FNAL Beamtested (both but in separate pixels)	Under evalue pixel) (both in same pixel)	
				Lower
Chip Size (mm ²)	2.9 x 2.9	4.45 × 4.45	6 × 6	4.45 x 4.45
Pixel Size (µm ²)	20 × 20	25 × 25	30 × 30	20 × 20
Pixel Array	50 × 50	64 x 64 (Time Stamp) 16 x 64 (Analog Signal)	128 x 128	104 x 104
Functions (Pixel)	Pre. Amplifier (CSA) Analog signal memory (2 hits)	Pre. Amplifier (CSA) Comparator (Chopper inverter) Shift register (DFF × 2) Analog signal memory (2 hits) or Time stamp memory (2 hits)	Pre. Amplifier (CSA) Comparator (Chopper inverter) Shift register (DFF x 3) Analog signal memory (3 hits) Time stamp memory (3 hits)	Pre. Amplifier (CSA) Comparator (Chopper inverter) Shift register (DFF x 3) Analog signal memory (3 hits) Time stamp memory (3 hits)
Functions (On Chip)	Column ADC (8 bit)	Column ADC (8 bit) Zero-suppression logic	Column ADC (8 bit)	Column ADC (8 bit)
Wafer	FZ n -type (Single SOI)	Cz p -type (Double SOI)	FZ p -type (Double SOI)	FZ p -type (Double SOI)
Wafer Resistivity (kΩ-cm)	2 ≤	1≤	3 - 10	3 - 10
-	Delivered (Dec. 2015)	Delivered (Jap. 2017)		

SOFIST-1 SPATIAL RESOLUTION

SOFIST residual to FPIX track (σ_track~0.57/0.65μm) Bias=130V (~500um depletion) =>15V (~200μm depletion) Readout: external 12-b ADCs =>on-chip 8-b ADCs

SOFIST-1 SPATIAL RESOLUTION

- Track uncertainty (0.6um) subtracted
 Compatible with DEFFET ([22])
- η correction may improve further

SOFIST-2 BEAM TEST 2018MAR

SOFIST-2 TIMESTAMP CORRELATION

SIZE OF FNAL MAIN INJECTOR (MI)

SOFIST-2 ANALOG SIGNAL

Noise SOFIST2 IP-18 RunID 0180 6.0 Voise (ADC) 200 #pixels BPW 16 um 5.8 BPW 16x16 um², Mean = 5.14 ± 0.15 180 BPW 14 um BPW 14x14 um², Mean = 5.17 ± 0.14 5.6 160 BPW 12x12 um², Mean = 5.18 ± 0.16 🔸 BPW 12 um 5.4 140 RMS 8 5.2 120 5.0 100 BNW 4.8 80 4.6 67 60 4.4 40 р 4.2 20 25um 4.0 0^L -10 5.4 5.6 5.8 -50 -40 -30 -20 0 4.8 5 5.2 44 46 Noise (ADC) HV (V) Yamada (KEK) ClusterTotalADC_SOFIST2_IP-08 ClusterTotalADC_SOFIST2_IP-08 ClusterTotalADC_SOFIST2_IP-08 ClusterTotalADC_SOFIST2_IP-08 500 500 450 450 450 450 HV = -5 VHV = -10 V HV = -15 V HV = -20 V 400 400 400E 400 Peak = 384 ADC Peak = 512 ADC Peak = 576 ADC Peak = 704 ADC 350 350 350 350 300 300 300 300 250 250 250 250 200 200 200 200 -5V 150 150 150 150 100 **Cluster charge** 100 100 100 50 (HV dependence) 5001000150020002500300035004000 500 10001 50020002 50030003 5004000 5001000150020002500300035004000 5001000150020002500300035004000 Cluster ADC Cluster ADC Cluster ADC Cluster ADC ClusterTotalADC_SOFIST2_IP-08 ClusterTotalADC_SOFIST2_IP-08 ClusterTotalADC_SOFIST2_IP-08 ClusterTotalADC_SOFIST2_IP-08 500 500 500 500 816 450 450 450 450 HV = -25 V HV = -30 V HV = -35 V HV = -40 V400 400 400 400 Peak = 704 ADC Peak = 704 ADC Peak = 768 ADC Peak = 768 ADC 350 350 350 350 300 300Ē 300 300 250 250 250 250 200 200 200 200 -20V -40V 150 150 150 150 100 100 100 500 10001 50020002 50030003 5004000 500 10001 500200 02 50 03 00 03 50 04 000 5001000150020002500300035004000 000150020002500300035004000 Cluster ADC Cluster ADC Cluster ADC Cluster ADC K. Hara, US-Japan Science Program, March 2019, Famada (KEK) 25

SOFIST-2 FULL DEPLETION

Full depletion expected $\sim 30V$ for 9×10^{12} /cm³ (0.5k Ω cm) concentration (measured)

S>700 ADC (N~5 ADC) for 67um thickness

K. Hara, US-Japan Science Program, March 2019, FNAL

D

SOFIST-2 CLUSTER CHARGE

SOI Testbeam@FNAL (2018 Feb/Mar)

Tracker for SOFIST testbeam

Using 4 plaes of large-area INTPIX4

Pixel size : 17x17um Sensitive area (8.7x14.1mm)

SOFIST2 SPATIAL RESOLUTION

Due to a high Vth applied in the testbeam, hits are with \sim single cluster $\Rightarrow 25$ um/ $\sqrt{12}$ ~7.2um expected

SOFIST-3 – QUICK TEST

Both functions implemented on 30um pixels

Charge signal

D

β線画像 (Sr90)

Timestamp

Under testbeam @ FNAL

SOFIST-3 – PIXEL LAYOUT

SOFIST VER.4

SOFIST-4: PIXEL LAYOUT

Lower pixel

• Pre-amp

D

Comparator

Upper pixel

- Shift-register
- Analog memory x3
- Timestamp x3

3D IS COMING (SOFIST-4)

Cylinder-type is more reliable

T-Micro slight mis-alignment to UBM \Rightarrow corrected

Upper&lower bumps are stacked well (peel off one sensor layer) Bonding<200degC

REMAINING PROCESSES (SOFIST-4)

SUMMARY

5-year Grant-in-Aid (2013-2017) accelerated development/application of various SOI devices.

SOFIST has been tested in FNAL beam SOFISTv1 <20um pixel size>

spatial resolution:

1.3 um(500um)-1.4 um (200um) with no η -correction applied SOFISTv2 <25um pixel size>

time resolution: 1.89us (linear calibration) good S/N~120 for 67um thickness cluster size~1 (Vth was set slightly high)

spatial resolution ~8um as expected from pixel si

SOFISTv3 is beam tested SOFISTv4 fabrication is underway

SPARES

INTERNATIONAL LINEAR COLLIDER

ILC detector concept (ILD)

- ILC EXPERIMENT
 - E+E- LINEAR COLLIDER
 - CENTER OF MASS ENERGY: 250 500 GEV
 - PRECISE MEASUREMENT OF THE HIGGS BOSON

Vertex detector system

ISSUES TO OVERCOME

In application of SOI to pixel devices

D

40

WAFER TYPES

Lapis Semiconductor: 0.20um FD-SOI process

Optimum wafer selectable (single p/n, various resisitivities):

One type for double: getting better!

D

Layer	Single SOI	D-1 (SOITEC)	D-2 (Shinetsu)	D-3(Shinetsu) MX2166 ^{On-}	going MP1
SOI1	p-type 88 nm,	p-type 88 nm,	p-type 88 nm,	p-type 88 nm,	
	<10 Ω∙cm	<10 Ω∙cm	<10 Ω •cm	< 10 Ω ∙cm	
BOX1	200 nm	145 nm	145 nm	145 nm	
SOI2	-	p-type 88 nm,	n-type 150 nm,	n-type 150 nm,	
		<10 Ω •cm	<10 Ω •cm	3-5 Ω •cm	
BOX2		145 nm	145 nm	145 nm	
Substra	n-type/p-type	n-type	p-type	p-type	0
te	CZ, FZ, Low-Ox CZ,,,	CZ	Low Oxygen CZ	FZ	(
725um	0.7~25 kΩ •cm	>700 Ω •cm	>1.0 kΩ ∙cm	> 5.0 kΩ ∙cm	