EXPLORING THE INTERIOR OF THE NUCLEON WITH TRANSVERSE MOMENTUM DEPENDENT PARTON DISTRIBUTIONS (TMDS)

Alessandro Bacchetta

THANKS TO HADRONIC PHYSICS GROUP IN PAVIA

Valerio Bertone

Filippo Delcarro

Cristian Pisano

Chiara Bissolotti

Miguel G. Echevarria

Marco Radici

Giuseppe Bozzi

Barbara Pasquini

Simone Rodini

Francesco Celiberto

Fulvio Piacenza

WHY IS IT INTERESTING TO MAP THE NUCLEON?

WHY IS IT INTERESTING TO MAP THE NUCLEON?

Check predictions

WHY IS IT INTERESTING TO MAP THE NUCLEON?

Check predictions

Parton Distribution Functions

f(x)1 dimensional

STANDARD PARTON DISTRIBUTION FUNCTIONS

Standard collinear PDFs describe the distribution of partons in one dimension in momentum space. They are extracted through global fits

Accardi et al., arXiv:1603.08906

UNPOLARIZED PDF MOMENTS AND LATTICE QCD

PDFLattice White Paper, arXiv:1711.07916

Fair agreement, but not perfect

FULL UNPOLARIZED PDF AND LATTICE QCD

Alexandrou, Cichy, Constantinou, Hadjiyiannakou, Jansen, Scapellato, Steffens, arXiv:1902.00587

Transverse-Momentum Distributions

TRANSVERSE MOMENTUM DISTRIBUTIONS

TMDs describe the distribution of partons in three dimensions in momentum space. They also have to be extracted through global fits.

TRANSVERSE MOMENTUM DISTRIBUTIONS

TMDs describe the distribution of partons in three dimensions in momentum space. They also have to be extracted through global fits.

UNPOLARISED QUARK TMDS

UNPOLARISED QUARK TMDS

see talk by M. Radici for polarized ones

At small transverse momentum, the dominant part is given by TMDs.

At small transverse momentum, the dominant part is given by TMDs. The analysis of is usually done in Fourier-transformed space

At small transverse momentum, the dominant part is given by TMDs.

The analysis of is usually done in Fourier-transformed space

TMDs formally depend on two scales, but usually they are set to be equal.

TMDS IN SEMI-INCLUSIVE DIS

 k_{\perp} photon quark proton **TMD Parton TMD Parton** Fragmentation Functions **Distribution Functions** $F_{UU,T}(x,z,{\bf P}_{hT}^2,Q^2)$ $= x \sum_{\sigma} \mathcal{H}^{q}_{UU,T}(Q^2, \mu^2) \int d^2 \mathbf{k}_{\perp} d^2 \mathbf{P}_{\perp} f_1^a \left(x, \mathbf{k}_{\perp}^2; \mu^2 \right) D_1^{a \to h} \left(z, \mathbf{P}_{\perp}^2; \mu^2 \right) \delta \left(z \mathbf{k}_{\perp} - \mathbf{P}_{hT} + \mathbf{P}_{\perp} \right)$ $= x \sum \mathcal{H}_{UU,T}^{q}(Q^{2}, \mu^{2}) \int db_{T} b_{T} J_{0}(b_{T} | \mathbf{P}_{h\perp}|) \hat{f}_{1}^{q}(x, z^{2} b_{\perp}^{2}; \mu^{2}) \hat{D}_{1}^{a \to h}(z, b_{\perp}^{2}; \mu^{2})$

DIFFERENT CONTRIBUTIONS TO TRANSVERSE MOMENTUM

"intrinsic" transverse momentum

DIFFERENT CONTRIBUTIONS TO TRANSVERSE MOMENTUM

"intrinsic" transverse momentum soft and collinear gluon radiation

DIFFERENT CONTRIBUTIONS TO TRANSVERSE MOMENTUM

hard gluon radiation soft and collinear "intrinsic" gluon radiation (not in TMD region) transverse momentum $|k_{\perp}| \sim Q$ $|k_{\perp}| \sim \Lambda_{\rm QCD}$ $|k_{\perp}| \ll Q$

$$\hat{f}_1^q(x, b_T; \mu^2) = \int d^2 \mathbf{k}_\perp e^{i\mathbf{b}_T \cdot \mathbf{k}_\perp} f_1^q(x, \mathbf{k}_\perp^2; \mu^2)$$

see, e.g., Rogers, Aybat, PRD 83 (11), other possible schemes, e.g., Collins, "Foundations of Perturbative QCD" (11) Laenen, Sterman, Vogelsang, PRL 84 (00)

other possible schemes, e.g., Laenen, Sterman, Vogelsang, PRL 84 (00) Bozzi, Catani, De Florian, Grazzini, NPB737 (06) Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (18)

$$\hat{f}_1^q(x, b_T; \mu^2) = \int d^2 \mathbf{k}_\perp e^{i\mathbf{b}_T \cdot \mathbf{k}_\perp} f_1^q(x, \mathbf{k}_\perp^2; \mu^2)$$

$$\hat{f}_1^q(x, b_T; \mu^2) = \sum_i (C_{qi} \otimes f_1^i)(x, b_*; \mu_b) e^{\tilde{S}(b_*; \mu_b, \mu)} e^{g_K(b_T) \ln \frac{\mu}{\mu_0}} \hat{f}_{NP}^q(x, b_T)$$

see, e.g., Rogers, Aybat, PRD 83 (11), Collins, "Foundations of Perturbative QCD" (11)

other possible schemes, e.g., Laenen, Sterman, Vogelsang, PRL 84 (00) Bozzi, Catani, De Florian, Grazzini, NPB737 (06) Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (13)

$$\hat{f}_1^q(x, b_T; \mu^2) = \int d^2 \mathbf{k}_\perp e^{i\mathbf{b}_T \cdot \mathbf{k}_\perp} f_1^q(x, \mathbf{k}_\perp^2; \mu^2)$$

$$\hat{f}_1^q(x, b_T; \mu^2) = \sum_i (C_{qi} \otimes f_1^i)(x, b_*; \mu_b) e^{\tilde{S}(b_*; \mu_b, \mu)} e^{g_K(b_T) \ln \frac{\mu}{\mu_0}} \hat{f}_{NP}^q(x, b_T)$$

$$\mu_b = \frac{2e^{-\gamma_E}}{b_*}$$

see, e.g., Rogers, Aybat, PRD 83 (11), Collins, "Foundations of Perturbative QCD" (11)

other possible schemes, e.g., Laenen, Sterman, Vogelsang, PRL 84 (00) Bozzi, Catani, De Florian, Grazzini, NPB737 (06) Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (13)

$$\hat{f}_1^q(x, b_T; \mu^2) = \int d^2 \mathbf{k}_\perp e^{i\mathbf{b}_T \cdot \mathbf{k}_\perp} f_1^q(x, \mathbf{k}_\perp^2; \mu^2)$$

perturbative Sudakov form factor

$$\hat{f}_1^q(x,b_T;\mu^2) = \sum_i \left(C_{qi} \otimes f_1^i\right)(x,b_*;\mu_b) e^{\tilde{S}(b_*;\mu_b,\mu)} e^{g_K(b_T)\ln\frac{\mu}{\mu_0}} \hat{f}_{\mathrm{NP}}^q(x,b_T)$$

$$\mu_b = \frac{2e^{-\gamma_E}}{b_*}$$
collinear PDF
nonperturbative

matching coefficients (perturbative)

nonperturbative part of evolution

nonperturbative part of TMD

see, e.g., Rogers, Aybat, PRD 83 (11), other possible schemes, e.g., Collins, "Foundations of Perturbative QCD" (11) Laenen, Sterman, Vogelsang, PRL 84 (00)

other possible schemes, e.g., Laenen, Sterman, Vogelsang, PRL 84 (00) Bozzi, Catani, De Florian, Grazzini, NPB737 (06) Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (13)

Sudakov form factor

LL
$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right)$$

Sudakov form factor

LL
$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right)$$

NLL
$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2} \right)$$

Sudakov form factor

matching coeff.

$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right)$$

$$C^0$$

$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2} \right)$$

$$C^0$$

Sudakov form factor

matching coeff.

$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right)$$

$$C^0$$

$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2} \right)$$

$$C^0$$

$$\mathsf{NLL'} \qquad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2} \right)$$

$$\alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2} \right)$$

$$\left(C^0 + \alpha_S C^1\right)$$

Sudakov form factor

matching coeff.

$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right)$$

$$C^0$$

$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2} \right)$$

$$C^0$$

NLL'
$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2} \right)$$

$$\left(C^0 + \alpha_S C^1\right)$$

the difference between the two is NNLL

$$\alpha_S^n \ln^{2n-2} \left(\frac{Q^2}{\mu_b^2} \right)$$

COMPARISON OF DIFFERENT ORDERS

V. Bertone's talk at LHC EW WG General Meeting, Dec 2019 https://indico.cern.ch/event/849342/

RECENT TMD FITS OF UNPOLARIZED DATA

	Framework	HERMES	COMPASS	DY	Z production	N of points	χ^2/N_{points}
Pavia 2017 arXiv:1703.10157	NLL	✓	✓	>	✓	8059	1.55
SV 2017 arXiv:1706.01473	NNLL'	×	×	>	>	309	1.23
BSV 2019 arXiv:1902.08474	NNLL'	×	×	>	>	457	1.17
SV 2019 arXiv:1912.06532	NNLL'	✓	✓	✓	✓	1039	1.06
Pavia 2019 arXiv:1912.07550	N³LL	×	×	>	✓	353	1.02

x-Q² COVERAGE

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

Scimemi, Vladimirov, arXiv:1912.06532

x-Q² COVERAGE

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

Scimemi, Vladimirov, arXiv:1912.06532

x₁ x₂ COVERAGE

x₁ x₂ COVERAGE

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

Drell-Yan **☆ Fermilab**

Number of data points: 8059 Global $\chi^2/dof = 1.55$

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

P_{hT}[GeV]

P_{hT}[GeV]

P_{hT}[GeV]

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

The TMD "eight-thousander" fit

The TMD "eight-thousander" fit

$$\hat{f}_{NP}(x, b_T) = e^{-g_1(x)\frac{b_T^2}{4}} \left(1 - \frac{\lambda g_1^2(x)}{1 + \lambda g_1(x)} \frac{b_T^2}{4} \right)$$

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

$$\hat{f}_{NP}(x, b_T) = e^{-g_1(x)\frac{b_T^2}{4}} \left(1 - \frac{\lambda g_1^2(x)}{1 + \lambda g_1(x)} \frac{b_T^2}{4} \right)$$

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

$$\hat{f}_{NP}(x, b_T) = e^{-g_1(x)\frac{b_T^2}{4}} \left(1 - \frac{\lambda g_1^2(x)}{1 + \lambda g_1(x)} \frac{b_T^2}{4} \right)$$

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

expression in b_T space

$$\hat{f}_{NP}(x, b_T) = e^{-g_1(x)\frac{b_T^2}{4}} \left(1 - \frac{\lambda g_1^2(x)}{1 + \lambda g_1(x)} \frac{b_T^2}{4} \right)$$

Guassian + weighted Gaussian

plot in k_{\perp} space

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

$$\hat{f}_{NP}(x, b_T) = e^{-g_1(x)\frac{b_T^2}{4}} \left(1 - \frac{\lambda g_1^2(x)}{1 + \lambda g_1(x)} \frac{b_T^2}{4} \right)$$

- Guassian + weighted Gaussian
- nontrivial x dependence

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

expression in b_T space

$$\hat{f}_{NP}(x, b_T) = e^{-g_1(x)\frac{b_T^2}{4}} \left(1 - \frac{\lambda g_1^2(x)}{1 + \lambda g_1(x)} \frac{b_T^2}{4} \right)$$

- Guassian + weighted Gaussian
- nontrivial x dependence
- no flavor dependence

plot in k_{\perp} space

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

expression in b_T space

$$\hat{f}_{NP}(x, b_T) = e^{-g_1(x)\frac{b_T^2}{4}} \left(1 - \frac{\lambda g_1^2(x)}{1 + \lambda g_1(x)} \frac{b_T^2}{4} \right)$$

- Guassian + weighted Gaussian
- nontrivial x dependence
- no flavor dependence

$$g_K(b_T) = -\frac{g_2}{2}b_T^2$$
 Guassian

plot in k_{\perp} space

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

expression in b_T space

$$\hat{f}_{NP}(x, b_T) = e^{-g_1(x)\frac{b_T^2}{4}} \left(1 - \frac{\lambda g_1^2(x)}{1 + \lambda g_1(x)} \frac{b_T^2}{4} \right)$$

- Guassian + weighted Gaussian
- nontrivial x dependence
- no flavor dependence

$$g_K(b_T) = -\frac{g_2}{2}b_T^2$$
 Guassian

plot in k_{\perp} space

$$\hat{D}_{NP}(z, b_T) = \frac{g_3(z) e^{-g_3(z)\frac{b_T^2}{4z^2}} + (\lambda_F/z^2)g_4^2(z) \left(1 - g_4(z)\frac{b_T^2}{4z^2}\right) e^{-g_4^2(z)\frac{b_T^2}{4z^2}}}{z^2 \left(g_3(z) + (\lambda_F/z^2)g_4^2(z)\right)}$$

TMD Frag. Func.

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

expression in b_T space

$$\hat{f}_{NP}(x, b_T) = e^{-g_1(x)\frac{b_T^2}{4}} \left(1 - \frac{\lambda g_1^2(x)}{1 + \lambda g_1(x)} \frac{b_T^2}{4} \right)$$

- Guassian + weighted Gaussian
- nontrivial x dependence
- no flavor dependence

$$g_K(b_T) = -\frac{g_2}{2}b_T^2$$
 Guassian

$$\hat{D}_{NP}(z, b_T) = \frac{g_3(z) e^{-g_3(z)\frac{b_T^2}{4z^2}} + (\lambda_F/z^2)g_4^2(z)\left(1 - g_4(z)\frac{b_T^2}{4z^2}\right) e^{-g_4^2(z)\frac{b_T^2}{4z^2}}}{z^2\left(g_3(z) + (\lambda_F/z^2)g_4^2(z)\right)}$$

TMD Frag. Func.

11 free parameters

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

Data selection: $q_T/Q < 0.2$

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

Data selection: $q_T/Q < 0.2$

Number of data points: 353

The TMD "Varzi" fit

PV19 - DATA COMPARISION

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

Data selection: $q_T/Q < 0.2$

Number of data points: 353

PV19 - DATA COMPARISION

10

 $q_{\mathrm{T}} \, [\mathrm{GeV}]$

12

0.95

12.5

15.0

17.5

PV19 - DATA COMPARISION

 $q_{
m T} \, [{
m GeV}]$

 $q_{\rm T} \, [{\rm GeV}]$

0.06

0.05

0.03

0.95

1.6 < |y| < 2

 $p_{T,\ell} > 20 \text{ GeV}, |\eta_{\ell}| < 2.4$

 $rac{1}{1}rac{d\sigma}{\dot{\gamma}}\left[1/\mathrm{GeV}
ight]$

N³LL MTLAS data

 $q_{
m T} \, [{
m GeV}]^6$

12.5

15.0

17.5

0.050

0.045

0.040 0.035

0.025

 $116~{\rm GeV} < Q < 150~{\rm GeV}$

 $[1/\mathrm{GeV}]$

N³LL ATLAS data

10

12

Number of data points: 353 Global $\chi^2/dof = 1.02$

expression in b_T space

$$f_{\text{NP}}(x, b_T, \zeta) = \left[\frac{1 - \lambda}{1 + g_1(x) \frac{b_T^2}{4}} + \lambda \exp\left(-g_{1B}(x) \frac{b_T^2}{4}\right) \right]$$

$$\times \exp\left[-\left(g_2 + g_{2B}b_T^2\right) \ln\left(\frac{\zeta}{Q_0^2}\right) \frac{b_T^2}{4} \right] ,$$

expression in b_T space

$$f_{\rm NP}(x, b_T, \zeta) = \left[\frac{1 - \lambda}{1 + g_1(x) \frac{b_T^2}{4}} + \lambda \exp\left(-g_{1B}(x) \frac{b_T^2}{4}\right) \right]$$

$$\times \exp\left[-\left(g_2 + g_{2B}b_T^2\right)\ln\left(\frac{\zeta}{Q_0^2}\right)\frac{b_T^2}{4}\right],$$

expression in b_T space

$$f_{\rm NP}(x, b_T, \zeta) = \left[\frac{1 - \lambda}{1 + g_1(x) \frac{b_T^2}{4}} + \lambda \exp\left(-g_{1B}(x) \frac{b_T^2}{4}\right) \right]$$

$$\times \exp\left[-\left(g_2 + g_{2B}b_T^2\right)\ln\left(\frac{\zeta}{Q_0^2}\right)\frac{b_T^2}{4}\right],$$

• q-Guassian + Gaussian

expression in b_T space

$$f_{\text{NP}}(x, b_T, \zeta) = \left[\frac{1 - \lambda}{1 + g_1(x) \frac{b_T^2}{4}} + \lambda \exp\left(-g_{1B}(x) \frac{b_T^2}{4}\right) \right]$$

$$\times \exp\left[-\left(g_2 + g_{2B}b_T^2\right)\ln\left(\frac{\zeta}{Q_0^2}\right)\frac{b_T^2}{4}\right],$$

- q-Guassian + Gaussian
- nontrivial x dependence

expression in b_T space

$$f_{\text{NP}}(x, b_T, \zeta) = \left[\frac{1 - \lambda}{1 + g_1(x) \frac{b_T^2}{4}} + \lambda \exp\left(-g_{1B}(x) \frac{b_T^2}{4}\right) \right]$$

$$\times \exp\left[-\left(g_2 + g_{2B}b_T^2\right) \ln\left(\frac{\zeta}{Q_0^2}\right) \frac{b_T^2}{4} \right] ,$$

- q-Guassian + Gaussian
- nontrivial x dependence
- no flavor dependence

expression in b_T space

$$f_{\text{NP}}(x, b_T, \zeta) = \left[\frac{1 - \lambda}{1 + g_1(x) \frac{b_T^2}{4}} + \lambda \exp\left(-g_{1B}(x) \frac{b_T^2}{4}\right) \right]$$

$$\times \exp\left[-\left(g_2 + g_{2B}b_T^2\right)\ln\left(\frac{\zeta}{Q_0^2}\right)\frac{b_T^2}{4}\right],$$

- q-Guassian + Gaussian
- nontrivial x dependence
- no flavor dependence
- non-Gaussian nonperturbative TMD evolution

expression in b_T space

$$f_{\rm NP}(x, b_T, \zeta) = \left[\frac{1 - \lambda}{1 + g_1(x) \frac{b_T^2}{4}} + \lambda \exp\left(-g_{1B}(x) \frac{b_T^2}{4}\right) \right]$$

$$\times \exp\left[-\left(g_2 + g_{2B}b_T^2\right)\ln\left(\frac{\zeta}{Q_0^2}\right)\frac{b_T^2}{4}\right],$$

- q-Guassian + Gaussian
- nontrivial x dependence
- no flavor dependence
- non-Gaussian nonperturbative TMD evolution

plot in k_{\perp} space

9 free parameters

from F. Piacenza's PhD thesis

Comparing the PV17 extraction with the new COMPASS data, without normalization factors, at NLL the agreement is very good

from F. Piacenza's PhD thesis

Comparing the PV17 extraction with the new COMPASS data, without normalization factors, at NLL the agreement is very good

Going to NLL' or NNLL the situation dramatically worsens!

from F. Piacenza's PhD thesis

talk by O. Gonzalez at DIS2019

Torino's group also confirmed that large normalisation factors have to be introduced to describe COMPASS data

from F. Piacenza's PhD thesis

Black dots: large normalisation factors required to fit COMPASS multiplicities at NLL'

from F. Piacenza's PhD thesis

Black dots: large normalisation factors required to fit COMPASS multiplicities at NLL'

from F. Piacenza's PhD thesis

Black dots: large normalisation factors required to fit COMPASS multiplicities at NLL'

Red dots: ratio between collinear formula and integral of TMD part at order α_{S}

from F. Piacenza's PhD thesis

Black dots: large normalisation factors required to fit COMPASS multiplicities at NLL'

Red dots: ratio between collinear formula and integral of TMD part at order α_S

from F. Piacenza's PhD thesis

Black dots: large normalisation factors required to fit COMPASS multiplicities at NLL'

Black and red dots are similar

Red dots: ratio between collinear formula and integral of TMD part at order α_S

from F. Piacenza's PhD thesis

Black dots: large normalisation factors required to fit COMPASS multiplicities at NLL'

BAD

Black and red dots are similar

Red dots: ratio between collinear formula and integral of TMD part at order α_S

Scimemi, Vladimirov, arXiv:1912.06532

‡ Fermilab

Scimemi, Vladimirov, arXiv:1912.06532

Scimemi, Vladimirov, arXiv:1912.06532

Scimemi, Vladimirov, arXiv:1912.06532

Scimemi, Vladimirov, arXiv:1912.06532

expression in b_T space

$$f_{NP}(x,b) = \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1+\lambda_3 x^{\lambda_4} \boldsymbol{b}^2}} \boldsymbol{b}^2\right)$$

Scimemi, Vladimirov, arXiv:1912.06532

expression in b_T space

$$f_{NP}(x,b) = \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1+\lambda_3 x^{\lambda_4} b^2}} b^2\right)$$

plot in b_T space

Scimemi, Vladimirov, arXiv:1912.06532

plot in b_T space

0.3

expression in b_T space

$$f_{NP}(x,b) = \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1+\lambda_3 x^{\lambda_4} b^2}} b^2\right)$$

Guassian at low b_T, exponential at high b_T

Scimemi, Vladimirov, arXiv:1912.06532

expression in b_T space

$$f_{NP}(x,b) = \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1+\lambda_3 x^{\lambda_4} b^2}}b^2\right)$$

- Guassian at low b_T, exponential at high b_T
- nontrivial x dependence

Scimemi, Vladimirov, arXiv:1912.06532

expression in b_T space

$$f_{NP}(x,b) = \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1+\lambda_3 x^{\lambda_4} b^2}}b^2\right)$$

- Guassian at low b_T, exponential at high b_T
- nontrivial x dependence
- no flavor dependence

plot in b_T space

Scimemi, Vladimirov, arXiv:1912.06532

plot in b_T space

expression in b_T space

$$f_{NP}(x,b) = \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1+\lambda_3 x^{\lambda_4} b^2}} b^2\right)$$

- Guassian at low b_T, exponential at high b_T
- nontrivial x dependence
- no flavor dependence
- Rapidity anomalous dimension

 (related to nonperturbative TMD evolution)
 0.6

$$\mathcal{D}(\mu, b) = \mathcal{D}_{\text{resum}}(\mu, b^*(b)) + c_0 b b^*(b),$$

Scimemi, Vladimirov, arXiv:1912.06532

plot in b_T space

expression in b_T space

$$f_{NP}(x,b) = \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1+\lambda_3 x^{\lambda_4} b^2}} b^2\right)$$

- Guassian at low b_T, exponential at high b_T
- nontrivial x dependence
- no flavor dependence
- Rapidity anomalous dimension (related to nonperturbative TMD evolution)

$$\mathcal{D}(\mu, b) = \mathcal{D}_{\text{resum}}(\mu, b^*(b)) + c_0 b b^*(b),$$

$$D_{NP}(x,b) = \exp\left(-\frac{\eta_1 z + \eta_2 (1-z)}{\sqrt{1 + \eta_3 (\boldsymbol{b}/z)^2}} \frac{\boldsymbol{b}^2}{z^2}\right) \left(1 + \eta_4 \frac{\boldsymbol{b}^2}{z^2}\right)$$

 $x = 10^{-2}$ x = 0.1 x = 1. 1.2 0.9 0.6 0.3 x = 1. 10% 20%

TMD Frag. Func.

Scimemi, Vladimirov, arXiv:1912.06532

expression in b_T space

$$f_{NP}(x,b) = \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1+\lambda_3 x^{\lambda_4} b^2}}b^2\right)$$

- Guassian at low b_T, exponential at high b_T
- nontrivial x dependence
- no flavor dependence
- Rapidity anomalous dimension (related to nonperturbative TMD evolution)

$$\mathcal{D}(\mu, b) = \mathcal{D}_{\text{resum}}(\mu, b^*(b)) + c_0 b b^*(b),$$

$$D_{NP}(x,b) = \exp\left(-\frac{\eta_1 z + \eta_2 (1-z)}{\sqrt{1 + \eta_3 (\mathbf{b}/z)^2}} \frac{\mathbf{b}^2}{z^2}\right) \left(1 + \eta_4 \frac{\mathbf{b}^2}{z^2}\right)$$

TMD Frag. Func.

11 free parameters

➤ Not easy to perform direct comparison due to different formalisms employed

- ➤ Not easy to perform direct comparison due to different formalisms employed
- ➤ In all extractions, simple Gaussians are not sufficient

- ➤ Not easy to perform direct comparison due to different formalisms employed
- ➤ In all extractions, simple Gaussians are not sufficient
- ➤ Nontrivial x-dependence is required

- ➤ Not easy to perform direct comparison due to different formalisms employed
- ➤ In all extractions, simple Gaussians are not sufficient
- ➤ Nontrivial x-dependence is required
- ➤ No flavor dependence is needed for the moment (note however that some flavor dependence is already generated by the collinear PDFs)

AVAILABLE TOOLS: NANGA PARBAT

https://github.com/vbertone/NangaParbat

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/vbertone/NangaParbat/releases

For the last development branch you can clone the master code:

git clone git@github.com:vbertone/NangaParbat.git

If you instead want to download a specific tag:

AVAILABLE TOOLS: ARTEMIDE

https://teorica.fis.ucm.es/artemide/

arTeMiDe

News

12 Dec 2019: Version 2.02 released (+manual update).

23 Feb 2019: Version 1.4 released (+manual update).

21 Jan 2019: Artemide now has a repository.

Archive of older links/news.

Articles, presentations & supplementary materials

Extra pictures for the paper arXiv:1902.08474

Seminar of A.Vladimirov in Pavia 2018 on TMD evolution.

Link to the text in Inspire.

Archive of older links/news.

Download

Recent version/release can be found in repository

About us & Contacts

If you have found mistakes, or have suggestions/questions, please, contact us.

Some extra materials can be found on Alexey's web-page

Alexey Vladimirov Alexey.Vladimirov@physik.uni-regensburg.de

Ignazio Scimemi ignazios@fis.ucm.es

TMDLIB AND TMDPLOTTER

https://tmdlib.hepforge.org/

Soon more TMD parametrisation will be available

TOOLS USED FOR DRELL-YAN PREDICTIONS

SCETlib

[https://confluence.desy.de/display/scetlib]

CuTe

[https://cute.hepforge.org]

DYRes/DYTURBO

[https://gitlab.cern.ch/DYdevel/DYTURBO]

ReSolve

[https://github.com/fkhorad/reSolve]

RadISH

[https://arxiv.org/pdf/1705.09127.pdf]

PB-TMD

[https://arxiv.org/pdf/1906.00919.pdf]

NangaParbat [https://github.com/vbertone/NangaParbat]

ar TeMiDe

[https://teorica.fis.ucm.es/artemide/]

V. Bertone's talk at LHC EW WG General Meeting, Dec 2019 https://indico.cern.ch/event/849342/

SCET

q_T-res.

PB

TMD

TOOLS USED FOR DRELL-YAN PREDICTIONS

V. Bertone's talk at LHC EW WG General Meeting, Dec 2019 https://indico.cern.ch/event/849342/

SCETlib

[https://confluence.desy.de/display/scetlib]

CuTe

[https://cute.hepforge.org]

DYRes/DYTURBO

[https://gitlab.cern.ch/DYdevel/DYTURBO]

ReSolve

[https://github.com/fkhorad/reSolve]

RadISH

[https://arxiv.org/pdf/1705.09127.pdf]

PB-TMD

[https://arxiv.org/pdf/1906.00919.pdf]

NangaParbat [https://github.com/vbertone/NangaParbat]

ar TeMiDe

[https://teorica.fis.ucm.es/artemide/]

SCET

q_T-res.

There is an entire industry of tools that make predictions for observables related to TMDs.

Most of them neglect SIDIS and the important

effects coming from nonperturbative TMD

components.

PB

OPEN ISSUES

TRANSVERSE MOMENTUM IN FRAGMENTATION FUNCTIONS

First direct measurement of TMD effects in fragmentation functions Makes use of thrust axis: the formalism should take it into account

TRANSVERSE MOMENTUM IN FRAGMENTATION FUNCTIONS

First direct measurement of TMD effects in fragmentation functions Makes use of thrust axis: the formalism should take it into account

Parton-model attempt to extract TMDFFs: arXiv:1907.12294

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Ratio width of down valence/ width of up valence

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Ratio of width of sea / width of up valence

Ratio width of down valence/ width of up valence

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Ratio of width of sea / width of up valence

Ratio width of down valence/ width of up valence

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Ratio width of down valence/ width of up valence

There is room for flavour dependence, but we don't control it well

ATLAS Collab. arXiv:1701.07240

$$m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$$

= $80370 \pm 19 \text{ MeV}$,
 $m_{W^+} - m_{W^-} = -29 \pm 28 \text{ MeV}$.

ATLAS Collab. arXiv:1701.07240

All analyses assume that TMDs are not flavor dependent.
What happens if they are?

$$m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$$

= $80370 \pm 19 \text{ MeV}$,

$$m_{W^+} - m_{W^-} = -29 \pm 28 \text{ MeV}.$$

Bacchetta, Bozzi, Radici, Ritzmann, Signori, arXiv:1807.02101

Try some judicious choices of flavour dependent widths and check

Bacchetta, Bozzi, Radici, Ritzmann, Signori, arXiv:1807.02101

Try some judicious choices of flavour dependent widths and check

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

Bacchetta, Bozzi, Radici, Ritzmann, Signori, arXiv:1807.02101

Try some judicious choices of flavour dependent widths and check

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
$\mid 4 \mid$	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

narrow, medium, large narrow, large, narrow large, narrow, large large, medium, narrow medium, narrow, large

Bacchetta, Bozzi, Radici, Ritzmann, Signori, arXiv:1807.02101

Try some judicious choices of flavour dependent widths and check

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

narrow, medium, large narrow, large, narrow large, narrow, large large, medium, narrow medium, narrow, large

Bacchetta, Bozzi, Radici, Ritzmann, Signori, arXiv:1807.02101

Try some judicious choices of flavour dependent widths and check

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

narrow, medium, large narrow, large, narrow large, narrow, large large, medium, narrow medium, narrow, large

Not taking into account the flavour dependence of TMDs can lead to errors in the determination of the W mass

Higgs production

Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov, arXiv:1907.03780

Higgs production

Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov, arXiv:1907.03780

Quarkonium-pair production

Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel, arXiv:1909.05769

Higgs production

Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov, arXiv:1907.03780

Also linearly polarized gluon TMD is involved!

Quarkonium-pair production

Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel, arXiv:1909.05769

Higgs production

Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov, arXiv:1907.03780

 $pp \to H(\to \gamma \gamma) + X$

artemide v2.01

Also linearly polarized gluon TMD is involved!

Quarkonium-pair production

Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel, arXiv:1909.05769

0.88

Higgs production

Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov, arXiv:1907.03780

Also linearly polarized gluon TMD is involved!

Quarkonium-pair production

Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel, arXiv:1909.05769

Higgs production

Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov, arXiv:1907.03780

Also linearly polarized gluon TMD is involved!

Quarkonium-pair production

Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel, arXiv:1909.05769

MODEL FOR GLUON TMDS

see talk by F. Celiberto at REF2019 https://agenda.infn.it/event/17749

MODEL FOR GLUON TMDS

see talk by F. Celiberto at REF2019 https://agenda.infn.it/event/17749

Spectator model with spectral function

Reproduces collinear gluon PDFs

MODEL FOR GLUON TMDS

see talk by F. Celiberto at REF2019 https://agenda.infn.it/event/17749

Spectator model with spectral function

Reproduces collinear gluon PDFs

Generates nontrivial and widely different TMDs

THE FUTURE

NEW DATA FROM COMPASS

81 $Q^2(\text{GeV}/c)^2$ 0.4 < z < 0.6COMPAS 10 • h+ • h

Multidimesional binning

COMPASS Collab., arXiv:1709.07374

NEW DATA FROM COMPASS

81 $Q^2 (\text{GeV}/c)^2$ 0.4 < z < 0.6OMPA • h⁺ • h

Multidimesional binning

COMPASS Collab., arXiv:1709.07374

COMPASS is in "full swing" mode. Proton-target data are also expected

Only 2% of approved data taking

Only 2% of approved data taking

AWESOME!

SOLID @ JLAB

LHCb FIXED TARGET, INCLUDING POLARISATION

LHCb FIXED TARGET, INCLUDING POLARISATION

ALICE FIXED TARGET

ALICE FIXED TARGET

Possible fixed-target positioning

EXPECTED EXTENSION OF DATA RANGE

THE ELECTRON-ION COLLIDER PROJECT

BNL concept

JLab concept

- \rightarrow High luminosity: (10³⁴ cm⁻² s⁻¹)
- ➤ Variable CM energy: 20-100 GeV
- ➤ Highly polarized beams
- > Protons and other nuclei

25-29 May 2020 Almo Collegio Borromeo, Pavia, Italy

Overview

Committees

Timetable

Registration

Participant List

Accommodation

Contacts

transversity2020@unipv.it

info@pragmacongressi.it

+39 0382 309579

Transversity 2020 is the 6th international workshop on transverse polarization phenomena in hard processes, following those held in 2005 on Lake Como (Italy), 2008 in Ferrara (Italy), 2011 in Lošinj (Croatia), 2014 in Cagliari (Italy), and 2017 in Frascati (Italy)

The aim of the workshop is to provide an environment in which present theoretical and experimental knowledge in the field of transversity, transverse-momentum dependent distribution and fragmentation functions as well as generalised parton distribution functions will be presented and discussed in depth, together with new theoretical ideas and experimental perspectives. The workshop represents a valuable opportunity to gather the spin physics community, with a broad participation of theorists, as well as of experimentalists working in international collaborations at BEPC-II, BNL, CERN, DESY, KEK and Jefferson Lab (JLab), all deeply involved in this area of research. The workshop will also be a unique occasion for young researchers to form a detailed and up-to-date perspective on this fast-developing research field, and to present and discuss their own work and projects in a highly stimulating and reactive context.

https://agenda.infn.it/e/transversity2020

➤ Full-fledged TMD extractions up to NN3LL accuracy are coming out and being constantly improved

- ➤ Full-fledged TMD extractions up to NN3LL accuracy are coming out and being constantly improved
- ➤ For the moment, it is not straightforward to compare different extractions

- ➤ Full-fledged TMD extractions up to NN3LL accuracy are coming out and being constantly improved
- ➤ For the moment, it is not straightforward to compare different extractions
- ➤ Fragmentation functions need independent data

- ➤ Full-fledged TMD extractions up to NN3LL accuracy are coming out and being constantly improved
- ➤ For the moment, it is not straightforward to compare different extractions
- ➤ Fragmentation functions need independent data
- ➤ Flavor dependence of TMDs still not well constrained

- ➤ Full-fledged TMD extractions up to NN3LL accuracy are coming out and being constantly improved
- ➤ For the moment, it is not straightforward to compare different extractions
- ➤ Fragmentation functions need independent data
- > Flavor dependence of TMDs still not well constrained
- ➤ We expect a steady flow of data coming up in the next years

BACKUP SLIDES

LOW-b_T MODIFICATIONS

$$\log\left(Q^2b_T^2\right) \to \log\left(Q^2b_T^2 + 1\right)$$

see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104

LOW-b_T MODIFICATIONS

$$\log\left(Q^2b_T^2\right) \to \log\left(Q^2b_T^2 + 1\right)$$

see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104

$$b_*(b_c(b_{\mathrm{T}})) = \sqrt{\frac{b_{\mathrm{T}}^2 + b_0^2/(C_5^2 Q^2)}{1 + b_{\mathrm{T}}^2/b_{\mathrm{max}}^2 + b_0^2/(C_5^2 Q^2 b_{\mathrm{max}}^2)}}$$

$$b_{\min} \equiv b_*(b_c(0)) = \frac{b_0}{C_5 Q} \sqrt{\frac{1}{1 + b_0^2 / (C_5^2 Q^2 b_{\max}^2)}}$$

Collins et al. arXiv:1605.00671

LOW-b_T MODIFICATIONS

$$\log\left(Q^2b_T^2\right) \to \log\left(Q^2b_T^2 + 1\right)$$

see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104

$$b_*(b_c(b_{\mathrm{T}})) = \sqrt{\frac{b_{\mathrm{T}}^2 + b_0^2/(C_5^2 Q^2)}{1 + b_{\mathrm{T}}^2/b_{\mathrm{max}}^2 + b_0^2/(C_5^2 Q^2 b_{\mathrm{max}}^2)}}$$

$$b_{\min} \equiv b_*(b_c(0)) = \frac{b_0}{C_5 Q} \sqrt{\frac{1}{1 + b_0^2 / (C_5^2 Q^2 b_{\max}^2)}}$$

Collins et al. arXiv:1605.00671

- The justification is to recover the integrated result ("unitarity constraint")
- ullet Modification at low b_T is allowed because resummed calculation is anyway unreliable there

$$g_K = -g_2 \frac{b_T^2}{2} \qquad \qquad \mu_0 = 1 \,\text{GeV}$$

$$g_K = -g_2 \frac{b_T^2}{2} \qquad \qquad \mu_0 = 1 \,\text{GeV}$$

$$\mu_0 = 1 \, \mathrm{GeV}$$

$$\mu_b = 2e^{-\gamma_E}/b_*$$

$$\mu_b = 2e^{-\gamma_E}/b_*$$
 $\bar{b}_* \equiv b_{\text{max}} \left(\frac{1 - e^{-b_T^4/b_{\text{max}}^4}}{1 - e^{-b_T^4/b_{\text{min}}^4}}\right)^{1/4}$ $b_{\text{max}} = 2e^{-\gamma_E}$

$$b_{\text{max}} = 2e^{-\gamma_E}$$

$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

$$g_K = -g_2 \frac{b_T^2}{2} \qquad \qquad \mu_0 = 1 \,\text{GeV}$$

$$\mu_b = 2e^{-\gamma_E}/b_*$$
 $\bar{b}_* \equiv b_{\text{max}} \left(\frac{1 - e^{-b_T^4/b_{\text{max}}^4}}{1 - e^{-b_T^4/b_{\text{min}}^4}}\right)^{1/4}$
 $b_{\text{max}} = 2e^{-\gamma_E}$

$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

These are all choices that should be at some point checked/challenged

 $\hat{f}_1^q(x, b_T; \mu^2) = \sum_i (C_{qi} \otimes f_1^i)(x, b_*; \mu_b) e^{\tilde{S}(b_*; \mu_b, \mu)} e^{g_K(b_T) \ln \frac{\mu}{\mu_0}} \hat{f}_{NP}^q(x, b_T)$

$$g_K = -g_2 \frac{b_T^2}{2} \qquad \qquad \mu_0 = 1 \,\text{GeV}$$

$$\mu_b = 2e^{-\gamma_E}/b_*$$
 $\bar{b}_* \equiv b_{\text{max}} \left(\frac{1 - e^{-b_T^4/b_{\text{max}}^4}}{1 - e^{-b_T^4/b_{\text{min}}^4}}\right)^{1/4}$ $b_{\text{max}} = 2e^{-\gamma_E}$

$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

These are all choices that should be at some point checked/challenged

EFFECTS OF b* **PRESCRIPTION**

$$\mu_b = 2e^{-\gamma_E}/b_*$$
 $\bar{b}_* \equiv b_{\text{max}} \left(\frac{1 - e^{-b_T^4/b_{\text{max}}^4}}{1 - e^{-b_T^4/b_{\text{min}}^4}} \right)^{1/4}$
 $b_{\text{max}} = 2e^{-\gamma_E}$

$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

EFFECTS OF b* **PRESCRIPTION**

$$\mu_b = 2e^{-\gamma_E}/b_*$$
 $\bar{b}_* \equiv b_{\text{max}} \left(\frac{1 - e^{-b_T^4/b_{\text{max}}^4}}{1 - e^{-b_T^4/b_{\text{min}}^4}}\right)^{1/4}$
 $b_{\text{max}} = 2e^{-\gamma_E}$

No significant effect at high Q, but large effect at low Q (inhibits perturbative contribution)

$$Q^2 > 1.4 \text{ GeV}^2$$

$$P_{hT}, q_T < \text{Min}[0.2 \ Q, 0.7 \ Qz] + 0.5 \ \text{GeV}$$

We checked also

$$Q^2 > 1.4 \text{ GeV}^2$$

$$P_{hT}, q_T < \text{Min}[0.2 \ Q, 0.7 \ Qz] + 0.5 \ \text{GeV}$$

Total number of data points: 8059

Total $\chi^2/\text{dof} = 1.55$

We checked also

$$Q^2 > 1.4 \text{ GeV}^2$$

$$P_{hT}, q_T < \text{Min}[0.2 \ Q, 0.7 \ Qz] + 0.5 \ \text{GeV}$$

Total number of data points: 8059

Total $\chi^2/\text{dof} = 1.55$

We checked also

$$P_{hT} < \text{Min}[0.2 Q, 0.5 Qz] + 0.3 \text{ GeV}$$

Total number of data points: 3380

Total $\chi^2/\text{dof} = 0.96$

$$Q^2 > 1.4 \text{ GeV}^2$$

$$P_{hT}, q_T < \text{Min}[0.2 \ Q, 0.7 \ Qz] + 0.5 \ \text{GeV}$$

Total number of data points: 8059

Total $\chi^2/\text{dof} = 1.55$

We checked also

$$P_{hT} < \text{Min}[0.2 Q, 0.5 Qz] + 0.3 \text{ GeV}$$
 $P_{hT} < 0.2 Qz$

Total number of data points: 3380 Total number of data points: 477 Total $\chi^2/\text{dof} = 0.96$ Total $\chi^2/\text{dof} = 1.02$

BENCHMARKING OF DIFFERENT CODES

V. Bertone's talk at LHC EW WG General Meeting, Dec 2019 https://indico.cern.ch/event/849342/

TMDS AND TWO-SCALE EVOLUTION

The ζ -prescription is equivalent to the popular CSS-scheme since it satisfies the same set of differential equations. Nonetheless, this equivalence is strict only within an all-order perturbation theory and it is numerically violated for any truncated series.

TMDS AND TWO-SCALE EVOLUTION

Scimemi, Vladimirov, arXiv:1912.06532

The ζ -prescription is equivalent to the popular CSS-scheme since it satisfies the same set of differential equations. Nonetheless, this equivalence is strict only within an all-order perturbation theory and it is numerically violated for any truncated series.

NONPERTURBATIVE TMD EVOLUTION FROM LATTICE

talk by I. Stewart at REF2019, work in progress with P. Shanahan, M. Wagman, Y. Zhao

NONPERTURBATIVE TMD EVOLUTION FROM LATTICE

talk by I. Stewart at REF2019, work in progress with P. Shanahan, M. Wagman, Y. Zhao

NONPERTURBATIVE TMD EVOLUTION FROM LATTICE

talk by I. Stewart at REF2019, work in progress with P. Shanahan, M. Wagman, Y. Zhao

