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Standard collinear PDFs 
describe the distribution 
of partons in one 
dimension in 
momentum space.  
They are extracted 
through global fits

Accardi et al., arXiv:1603.08906
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FIG. 1: The u-valence, d-valence, gluon and sea quark (x⌃ = 2x(ū + c̄ + d̄ + s̄)) PDFs with their 1 �
uncertainty bands of ABM12 [2], HERAPDF2.0 [4] and JR14 (set JR14NNLO08VF) [5] at NNLO at the
scale Q2 = 4 GeV2; absolute results (left) and ratio with respect to ABM12 (right).
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FIG. 2: Same as Fig. 1 for the CT14 [3], MMHT14 [6] and NNPDF3.0 [7] PDF sets with their 1 �
uncertainty bands at NNLO; absolute results (left) and ratio with respect to CT14 (right).
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FIG. 1: The u-valence, d-valence, gluon and sea quark (x⌃ = 2x(ū + c̄ + d̄ + s̄)) PDFs with their 1 �
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9

 x  
-410 -310 -210 -110 1

)2
(x

,Q
V

 x
u

0

0.2

0.4

0.6

0.8

1
 

2 = 4.0 GeV2Q
CT14 NNLO (68%CL)
MMHT14nnlo68cl
NNPDF30 NNLO

 x  
-410 -310 -210 -110 1

re
f

)2
(x

,Q
V

)/x
u

2
(x

,Q
V

 x
u

0.5

1

1.5

2

2 = 4.0 GeV2Q
CT14 NNLO (68%CL)
MMHT14nnlo68cl
NNPDF30 NNLO

 x  
-410 -310 -210 -110 1

)2
(x

,Q
V

 x
d

0

0.1

0.2

0.3

0.4

0.5

 
2 = 4.0 GeV2Q

CT14 NNLO (68%CL)
MMHT14nnlo68cl
NNPDF30 NNLO

 x  
-410 -310 -210 -110 1

re
f

)2
(x

,Q
V

)/x
d

2
(x

,Q
V

 x
d

0.5

1

1.5

2

2 = 4.0 GeV2Q
CT14 NNLO (68%CL)
MMHT14nnlo68cl
NNPDF30 NNLO

 x  
-410 -310 -210 -110 1

)2
 x

g(
x,

Q

0

2

4

6

8

10
 

2 = 4.0 GeV2Q
CT14 NNLO (68%CL)
MMHT14nnlo68cl
NNPDF30 NNLO

 x  
-410 -310 -210 -110 1

re
f

)2
)/x

g(
x,

Q
2

 x
g(

x,
Q

0.5

1

1.5

2

2 = 4.0 GeV2Q
CT14 NNLO (68%CL)
MMHT14nnlo68cl
NNPDF30 NNLO

 x  
-410 -310 -210 -110 1

)2
(x

,Q
Σ

 x

0

0.5

1

1.5

2

2.5

3

 
2 = 4.0 GeV2Q

CT14 NNLO (68%CL)
MMHT14nnlo68cl
NNPDF30 NNLO

 x  
-410 -310 -210 -110 1

re
f

)2
(x

,Q
Σ

)/x2
(x

,Q
Σ

 x

0.5

1

1.5

2

2 = 4.0 GeV2Q
CT14 NNLO (68%CL)
MMHT14nnlo68cl
NNPDF30 NNLO

FIG. 2: Same as Fig. 1 for the CT14 [3], MMHT14 [6] and NNPDF3.0 [7] PDF sets with their 1 �
uncertainty bands at NNLO; absolute results (left) and ratio with respect to CT14 (right).
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http://arxiv.org/abs/arXiv:1603.08906
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Figure 3.2: A comparison of the unpolarized PDF benchmark moments between the lattice QCD computations
and global fit determinations. Results are displayed both in terms of absolute values (left) and ratios to the
lattice values (right) at µ2 = 4 GeV2.

As is apparent from Table 3.7 and Fig. 3.2, there is a significant di↵erence in the uncertainties
between the lattice QCD and global fit results, with the latter always about one order of magnitude
smaller than the former. Moreover, even within their large uncertainties, the lattice-QCD results for
the first moments of the total up and strange quark and the gluon PDFs are not compatible with their
global-fit counterparts. In the case of quarks, the discrepancy is below 2� (in units of the lattice-QCD
uncertainty), while in the case of the gluon the discrepancy is slightly larger than 3�.

On the lattice-QCD side, we note that in the flavor-singlet sector calculations neglected part of the
renormalization and computed some other parts only perturbatively. Most of the discrepancies between
lattice-QCD and global-fit results are observed in the flavor-singlet sector. Progress in taking into
account the renormalization properly could shift lattice-QCD results significantly, and reconcile them
with the global fits in the future. We also note that the momentum sum rule, Eq. (2.53), usually is not
imposed in lattice-QCD calculations. In the ETMC17 analysis [250], it turns out to be 1.071(93)(72),
see Table 3.1, if uncertainties are assumed to be uncorrelated. Although there is no evidence for a
violation of the momentum sum rule based on this result, one must be careful combining results from
di↵erent calculations to account for correlations and other sources of error. Also, note that the ETMC17
analysis is performed with Nf = 2 flavors, hence the strange quark should not participate in the sum
rule.

On the global-fit side, we note that the amount of experimental information that constrains the
total up-quark distribution is the largest among all distributions. Therefore, it seems unlikely that its
global-fit central value could vary significantly in the future, and become compatible with the current
lattice result. Conversely, the amount of experimental information that constrains the total strange
distribution in a global fit is less abundant and less accurate. A slight shift in its central value, towards
the current lattice-QCD results, might be observed in the future, as soon as new data sensitive to the
strange quark becomes available. Finally, in an attempt to reconcile the lattice-QCD and the global-fit
results of the first moment of the gluon PDF, one could assume a completely di↵erent behavior of the
gluon PDF below the HERA kinematic coverage, x ⇠ 10�5 (see Fig. 2.2). While such a kinematic region
remains completely unexplored, in general the contribution of this region to the moments is negligible
and thus unlikely to resolve the situation.

41

PDFLattice White Paper, arXiv:1711.07916

Fair agreement, but not perfect
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FIG. 33: Final results for the unpolarized PDF (upper left), helicity PDF (upper right) and transversity PDF (lower), using
the largest momentum P3=10⇡/L (blue curve). The global fits of Refs. [112–114] (unpolarized) , Refs. [115–117] (helicity) ,
Refs. [118] (transversity) are shown for qualitative comparison.

The parameters of the ensembles are expected to satisfy certain criteria for the range of values of the pion mass,
the volume and the lattice spacing, to study uncertainties such as:

• Cuto↵ e↵ects: A reliable control of cuto↵ e↵ects requires at least three values of the lattice spacing smaller than 0.1
fm. Normally, cuto↵ e↵ects are found to be relatively small in lattice hadron structure calculations. In the quasi-PDF
computation, the nucleon is boosted to momenta for which P3 becomes significant in comparison to the inverse lattice
spacing and this may lead to increased cuto↵ e↵ects. We note that for our largest momentum, we have aP3=0.65
which is below the lattice cuto↵ (unlike Refs. [26, 28, 31] where the employed nucleon momenta are significantly above
the lattice cuto↵), and the continuum dispersion relation is still satisfied, as shown in Fig. 4. Still, it is unclear to
what extent the good quality of the dispersion relation translates into discretization e↵ects of the matrix elements
considered here.

• Finite volume e↵ects : Similarly to discretization e↵ects, finite volume e↵ects are also usually found to be rather
small in hadron structure observables. The situation with quasi-PDFs is likely to be somewhat more complicated,
since we use operators with Wilson lines of significant length. The volume behavior of such extended operators was
considered by Briceño et al. [109] within a model using current-current correlators in a scalar theory. Despite the
fact that the model is not directly applicable to our investigation, it does provide a warning that the suppression of
finite volume e↵ects for matrix elements of spatially extended operators may change from the standard exp(�m⇡L)
to (Lm

/|L� z|
n) exp(�mN (L� z)), where m and n are undetermined exponents, which may become dominating for

large z. Thus, finite volume e↵ects may turn out to be a significant source of systematics and their investigation is
crucial in the future.

• Systematic uncertainties in the determination of the renormalization functions : Uncertainties also arise in the
computation of renormalization functions due to the breaking of rotational invariance. We have partly improved our

Alexandrou, Cichy, Constantinou, Hadjiyiannakou, Jansen, Scapellato, Steffens, arXiv:1902.00587 

global fits

lattice calculation 
(quasi-PDF approach)
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Transverse-Momentum Distributions

3 dimensional!
f(x,~kT )
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Transverse momentum

Fraction of  
longitudinal momentum

TMDs describe the distribution of partons in three dimensions in 
momentum space. They also have to be extracted through global 
fits.

How “wide” is the distribution? 
Is there a difference between flavors? 

Does it get wider at low x?
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see talk by M. Radici for polarized ones
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see, e.g., Ji, Ma, Yuan, PRD 71 (05) 
Collins, “Foundations of Perturbative QCD” (11)  
Rogers, Aybat, PRD 83 (11) 
Echevarria, Idilbi, Scimemi JHEP 1207 (12)

TMD factorization well understood
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×

http://arxiv.org/abs/arXiv:1812.07549
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TMD factorization breaks in pp to hadrons 
Is the breaking large?

see, e.g., Rogers, Mulders, PRD81 (10) Buffing, Kang, Lee, Liu, arXiv:1812.07549

×

http://arxiv.org/abs/arXiv:1812.07549
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Framework HERMES COMPASS DY Z 
production N of points χ2/Npoints

Pavia 2017 
arXiv:1703.10157 NLL ✔ ✔ ✔ ✔ 8059 1.55

SV 2017 
arXiv:1706.01473 NNLLʹ ✘ ✘ ✔ ✔ 309 1.23

BSV 2019 
arXiv:1902.08474 NNLLʹ ✘ ✘ ✔ ✔ 457 1.17

SV 2019 
arXiv:1912.06532 NNLLʹ ✔ ✔ ✔ ✔ 1039 1.06

Pavia 2019 
arXiv:1912.07550 N3LL ✘ ✘ ✔ ✔ 353 1.02

http://arxiv.org/abs/arXiv:1703.10157
http://arxiv.org/abs/arXiv:1912.07550
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Figure 5. Density of data in the plane (Q, x) (a darker color corresponds to a higher density).

The kinematic region in x and Q covered by the data set and thus contributing to the deter-
mination of TMDPDF is shown in fig. 5. The boxes enclose the sub-regions covered by the single
data sets. Looking at fig. 5, it is possible to distinguish two main clusters of data: the “low-energy
experiments”, i.e. E288, E605, E772, PHENIX, COMPASS and HERMES that place themselves
at invariant-mass energies between 1 and 18 GeV, and the “high-energy experiments”, i.e. all those
from Tevatron and LHC, that are instead distributed around the Z-peak region. From this plot we
observe that, kinematic ranges of SIDIS and DY data do not overlap.

As a final comment of this section let us mention that our data selection is particularly conser-
vative because it drops points that could potentially be described by TMD factorization (see e.g.
ref. [18] where a less conservative choice of cuts is used). However, our fitted data set guarantees
that we operate well within the range of validity of TMD factorization. In sec. 7 we show that
unexpectedly our extraction can describe a larger set of data as well.

4 Fit procedure

The experimental data are usually provided in a form specific for each setup. In order to extract
valuable information for the TMD extraction, one has to detail the methodology that has been
followed, and this is the purpose of this section. Finally, we also provide a suitable definition of the
�2 that allows for a correct exploitation of experimental uncertainties.

4.1 Treatment of nuclear targets and charged hadrons

The data from E288, E605 (Cu), E772, COMPASS, (part of) HERMES (isoscalar targets) come
from nuclear target processes. In these cases, we perform the iso-spin rotation of the corresponding
TMDPDF that simulates the nuclear-target effects. For example, we replace u-, and d-quark

– 24 –
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Figure 3. Kinematic coverage on the x1 vs. x2 plane of the dataset included in the present analysis.

Experiment LO [pb] NLO [pb] NNLO [pb]

D0 Run II 170.332 242.077 253.573

D0 Run II (µ) 100.765 119.002 124.675

CMS 7 TeV 291.977 384.569 398.853

CMS 8 TeV 340.132 456.337 473.411

ATLAS 7 TeV
|y| < 1

1 < |y| < 2

2 < |y| < 2.4

196.457
135.511
12.568

251.296
181.267
17.091

253.781
181.466
17.104

ATLAS 8 TeV
on-peak

|y| < 0.4

0.4 < |y| < 0.8

0.8 < |y| < 1.2

1.2 < |y| < 1.6

1.6 < |y| < 2

2 < |y| < 2.4

89.531
89.120
85.499
69.018
43.597
14.398

113.650
112.853
109.800
91.884
59.114
19.574

116.766
115.738
112.457
95.187
62.127
20.937

ATLAS 8 TeV
off-peak

46 GeV < Q < 66 GeV
116 GeV < Q < 150 GeV

15.199
3.805

14.449
5.317

14.368
5.521

Table 3. Total (fiducial) cross sections computed with DYNNLO [88, 89] using the central member of
the MMHT2014 collinear PDF sets [47] and required for the computation of the normalised differential
cross sections at the different perturbative orders.

and at NNLO for NNLL’ and N3LL. The values of the total cross sections at different
orders are reported in Tab. 3. We stress that in this analysis no additional normalisations
have been applied, with the consequence that both the shape and the normalisation of the
experimental distributions have an impact on the fit.

Most of the considered experimental datasets are released with a set of uncorrelated
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cross sections at the different perturbative orders.

and at NNLO for NNLL’ and N3LL. The values of the total cross sections at different
orders are reported in Tab. 3. We stress that in this analysis no additional normalisations
have been applied, with the consequence that both the shape and the normalisation of the
experimental distributions have an impact on the fit.

Most of the considered experimental datasets are released with a set of uncorrelated
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Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

rapidity = 0

http://arxiv.org/abs/arXiv:1912.07550
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Number of data points: 8059 
Global χ2/dof = 1.55 
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Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

SIDIS Drell-Yan Z production

http://arxiv.org/abs/arXiv:1703.10157
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SIDIS Drell-Yan Z production

Pavia17: first fit putting together  
semi-inclusive DIS and Drell-Yan
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The TMD “eight-thousander” fit

8000 data points

Nanga Parbat, Kashmir, 8126 m



23

The TMD “eight-thousander” fit
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Figure 4. Comparison between experimental data and theoretical predictions obtained at N3LL
accuracy for a representative subset of the datasets included in this analysis. The upper panel of
each plot displays the absolute qT distributions, while the lower panel displays the same distributions
normalised to the experimental central values. The blue bands represent the 1-� uncertainty of the
theoretical predictions.

parameter �, that measures the relative weight of Gaussian and q-Gaussian in Eq. (2.39), is
close to 0.5 indicating that these contributions weigh approximately the same. Concerning
the values of the parameters g2 and g2B associated to the non-perturbative contribution to
TMD evolution, we find that the coefficient g2B of the quartic term is small but significantly
different from zero. This seems to suggest that higher-power corrections to the commonly
assumed quadratic term g2 may be required by the data.

Further insight concerning the appropriateness of the functional form in Eqs. (2.39)-

Eqs. (2.39)-(2.40) as they are not a direct result of any of our fits.

– 22 –

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550
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Figure 4. Comparison between experimental data and theoretical predictions obtained at N3LL
accuracy for a representative subset of the datasets included in this analysis. The upper panel of
each plot displays the absolute qT distributions, while the lower panel displays the same distributions
normalised to the experimental central values. The blue bands represent the 1-� uncertainty of the
theoretical predictions.

parameter �, that measures the relative weight of Gaussian and q-Gaussian in Eq. (2.39), is
close to 0.5 indicating that these contributions weigh approximately the same. Concerning
the values of the parameters g2 and g2B associated to the non-perturbative contribution to
TMD evolution, we find that the coefficient g2B of the quartic term is small but significantly
different from zero. This seems to suggest that higher-power corrections to the commonly
assumed quadratic term g2 may be required by the data.

Further insight concerning the appropriateness of the functional form in Eqs. (2.39)-

Eqs. (2.39)-(2.40) as they are not a direct result of any of our fits.

– 22 –

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

Data selection: qT/Q < 0.2

http://arxiv.org/abs/arXiv:1912.07550
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Figure 4. Comparison between experimental data and theoretical predictions obtained at N3LL
accuracy for a representative subset of the datasets included in this analysis. The upper panel of
each plot displays the absolute qT distributions, while the lower panel displays the same distributions
normalised to the experimental central values. The blue bands represent the 1-� uncertainty of the
theoretical predictions.

parameter �, that measures the relative weight of Gaussian and q-Gaussian in Eq. (2.39), is
close to 0.5 indicating that these contributions weigh approximately the same. Concerning
the values of the parameters g2 and g2B associated to the non-perturbative contribution to
TMD evolution, we find that the coefficient g2B of the quartic term is small but significantly
different from zero. This seems to suggest that higher-power corrections to the commonly
assumed quadratic term g2 may be required by the data.

Further insight concerning the appropriateness of the functional form in Eqs. (2.39)-

Eqs. (2.39)-(2.40) as they are not a direct result of any of our fits.
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Data selection: qT/Q < 0.2

Number of data points: 353 
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Figure 4. Comparison between experimental data and theoretical predictions obtained at N3LL
accuracy for a representative subset of the datasets included in this analysis. The upper panel of
each plot displays the absolute qT distributions, while the lower panel displays the same distributions
normalised to the experimental central values. The blue bands represent the 1-� uncertainty of the
theoretical predictions.

parameter �, that measures the relative weight of Gaussian and q-Gaussian in Eq. (2.39), is
close to 0.5 indicating that these contributions weigh approximately the same. Concerning
the values of the parameters g2 and g2B associated to the non-perturbative contribution to
TMD evolution, we find that the coefficient g2B of the quartic term is small but significantly
different from zero. This seems to suggest that higher-power corrections to the commonly
assumed quadratic term g2 may be required by the data.

Further insight concerning the appropriateness of the functional form in Eqs. (2.39)-

Eqs. (2.39)-(2.40) as they are not a direct result of any of our fits.
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Figure 4. Comparison between experimental data and theoretical predictions obtained at N3LL
accuracy for a representative subset of the datasets included in this analysis. The upper panel of
each plot displays the absolute qT distributions, while the lower panel displays the same distributions
normalised to the experimental central values. The blue bands represent the 1-� uncertainty of the
theoretical predictions.

parameter �, that measures the relative weight of Gaussian and q-Gaussian in Eq. (2.39), is
close to 0.5 indicating that these contributions weigh approximately the same. Concerning
the values of the parameters g2 and g2B associated to the non-perturbative contribution to
TMD evolution, we find that the coefficient g2B of the quartic term is small but significantly
different from zero. This seems to suggest that higher-power corrections to the commonly
assumed quadratic term g2 may be required by the data.

Further insight concerning the appropriateness of the functional form in Eqs. (2.39)-

Eqs. (2.39)-(2.40) as they are not a direct result of any of our fits.
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Data selection: qT/Q < 0.2

Number of data points: 353

Pavia19: first DY fit at N3LL,  
exactly reproduces normalization
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Figure 4. Comparison between experimental data and theoretical predictions obtained at N3LL
accuracy for a representative subset of the datasets included in this analysis. The upper panel of
each plot displays the absolute qT distributions, while the lower panel displays the same distributions
normalised to the experimental central values. The blue bands represent the 1-� uncertainty of the
theoretical predictions.

parameter �, that measures the relative weight of Gaussian and q-Gaussian in Eq. (2.39), is
close to 0.5 indicating that these contributions weigh approximately the same. Concerning
the values of the parameters g2 and g2B associated to the non-perturbative contribution to
TMD evolution, we find that the coefficient g2B of the quartic term is small but significantly
different from zero. This seems to suggest that higher-power corrections to the commonly
assumed quadratic term g2 may be required by the data.

Further insight concerning the appropriateness of the functional form in Eqs. (2.39)-

Eqs. (2.39)-(2.40) as they are not a direct result of any of our fits.

– 22 –

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

Data selection: qT/Q < 0.2

Number of data points: 353
Global χ2/dof = 1.02 

Pavia19: first DY fit at N3LL,  
exactly reproduces normalization

http://arxiv.org/abs/arXiv:1912.07550


PV19 - RESULTING TMDS

28

with µb⇤ ⌘ µb(b⇤(bT )). The dependence on µ evidently cancels in the ratio. In addition,
for large values of bT µb⇤ saturates to some minimal value while µb becomes increasingly
small. As a consequence of this departure between µb⇤ and µb, as well as between

p
⇣ and

µb, the exponential in Eq. (2.37) tends to be suppressed, and so does fNP. Conversely, as
bT becomes small b⇤ approaches bmin. Using the definition in Eq. (2.33), it follows that µb⇤

saturates to Q while µb becomes larger and larger. In this limit, we have [51]

fNP �!
bT!0

1 + O
✓

1

Qp

◆
, (2.38)

where p is some positive number. Since TMD factorisation applies to leading-power in
qT /Q, we can neglect the power suppressed contribution such that fNP ! 1 for bT ! 0.
It is important to stress that the separation between perturbative and non-perturbative
components of a TMD is arbitrary and depends on the particular choice of b⇤ (or in general
on the prescription used to regularise the Landau pole). For any given choice, only the
combination in Eq. (2.36) is meaningful, and it is misleading to refer to fNP as to the
non-perturbative part of TMDs in a universal sense.

Following the requirements discussed above, we parameterise fNP as

fNP(x, bT , ⇣) =

"
1 � �

1 + g1(x)
b2T
4

+ � exp

✓
�g1B(x)

b2T
4

◆#

⇥ exp


�
�
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�
ln

✓
⇣

Q2
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◆
b2T
4

�
,

(2.39)

with Q0 = 1 GeV and with the g1(x) and g1B(x) functions given by

g1(x) =
N1

x�
exp


� 1

2�2
ln2

⇣x

↵

⌘�
,

g1B(x) =
N1B

x�B
exp


� 1

2�2
B

ln2

✓
x

↵B

◆�
.

(2.40)

There are a total of 9 free parameters (�, g2, g2B, N1, �, ↵, N1B, �B, ↵B) to be determined
from data.

Apart from the logarithmic dependence on ⇣, the functional form (2.39) is motivated by
empirical considerations. The first line parameterises the “intrinsic” TMD non-perturbative
contribution and it only depends on x and bT . The second line accounts for the non-
perturbative correction to the perturbative evolution. Therefore, it only depends on bT (on
top of the known dependence on ⇣).

The intrinsic contribution is a combination of a q-Gaussian (or Tsallis) distribution
(first term) and a standard Gaussian distribution (second term). The q-Gaussian has a
larger tail than the standard Gaussian, meaning that it gives a bigger contribution to the
TMD at small transverse momentum. We found that this combination is able to reproduce
the behaviour at very small qT of the experimental distributions from the lowest to the
highest energies considered in our analysis.

– 13 –
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from data.

Apart from the logarithmic dependence on ⇣, the functional form (2.39) is motivated by
empirical considerations. The first line parameterises the “intrinsic” TMD non-perturbative
contribution and it only depends on x and bT . The second line accounts for the non-
perturbative correction to the perturbative evolution. Therefore, it only depends on bT (on
top of the known dependence on ⇣).

The intrinsic contribution is a combination of a q-Gaussian (or Tsallis) distribution
(first term) and a standard Gaussian distribution (second term). The q-Gaussian has a
larger tail than the standard Gaussian, meaning that it gives a bigger contribution to the
TMD at small transverse momentum. We found that this combination is able to reproduce
the behaviour at very small qT of the experimental distributions from the lowest to the
highest energies considered in our analysis.
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expression in bT space

Parameter Value
g2 0.036 ± 0.009
N1 0.625 ± 0.282
↵ 0.205 ± 0.010
� 0.370 ± 0.063
� 0.580 ± 0.092

N1B 0.044 ± 0.012
↵B 0.069 ± 0.009
�B 0.356 ± 0.075
g2B 0.012 ± 0.003

Table 5. Average and standard deviation over the Monte Carlo replicas of the free parameters
fitted to the data and graphical representation of the correlation matrix.

(2.40) can be gathered by looking at the statistical correlations between parameters. In
the right panel of Tab. 5, we show a graphical representation of the correlation matrix of
the fitted parameters. The first observation is that (off-diagonal) correlations are generally
not very large. There is however one exception, i.e. the parameters � and � seem to
be strongly anti-correlated. This may indicate that the interplay between q-Gaussian and
Gaussian may be significantly x dependent. We leave a deeper study of this feature to a
future publication.
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Figure 5. The TMD of the down quark at µ =
p

⇣ = Q = 2 GeV (left plot) and 10 GeV (right
plot) as a function of the partonic transverse momentum k? for three different values of x. The
bands give the 1-� uncertainty.

To conclude this section, in Fig. 5 we show the down-quark TMD at µ =
p

⇣ = Q =

2 GeV (left plot) and 10 GeV (right plot) as a function of the partonic transverse momentum
k? for x = 0.001, 0.1, 0.3. The 1-� uncertainty bands are also shown. As expected, TMDs
are suppressed as k? grows and the suppression becomes relatively stronger as Q increases.
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There are a total of 9 free parameters (�, g2, g2B, N1, �, ↵, N1B, �B, ↵B) to be determined
from data.

Apart from the logarithmic dependence on ⇣, the functional form (2.39) is motivated by
empirical considerations. The first line parameterises the “intrinsic” TMD non-perturbative
contribution and it only depends on x and bT . The second line accounts for the non-
perturbative correction to the perturbative evolution. Therefore, it only depends on bT (on
top of the known dependence on ⇣).

The intrinsic contribution is a combination of a q-Gaussian (or Tsallis) distribution
(first term) and a standard Gaussian distribution (second term). The q-Gaussian has a
larger tail than the standard Gaussian, meaning that it gives a bigger contribution to the
TMD at small transverse momentum. We found that this combination is able to reproduce
the behaviour at very small qT of the experimental distributions from the lowest to the
highest energies considered in our analysis.
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expression in bT space

Parameter Value
g2 0.036 ± 0.009
N1 0.625 ± 0.282
↵ 0.205 ± 0.010
� 0.370 ± 0.063
� 0.580 ± 0.092
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�B 0.356 ± 0.075
g2B 0.012 ± 0.003

Table 5. Average and standard deviation over the Monte Carlo replicas of the free parameters
fitted to the data and graphical representation of the correlation matrix.

(2.40) can be gathered by looking at the statistical correlations between parameters. In
the right panel of Tab. 5, we show a graphical representation of the correlation matrix of
the fitted parameters. The first observation is that (off-diagonal) correlations are generally
not very large. There is however one exception, i.e. the parameters � and � seem to
be strongly anti-correlated. This may indicate that the interplay between q-Gaussian and
Gaussian may be significantly x dependent. We leave a deeper study of this feature to a
future publication.
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To conclude this section, in Fig. 5 we show the down-quark TMD at µ =
p

⇣ = Q =

2 GeV (left plot) and 10 GeV (right plot) as a function of the partonic transverse momentum
k? for x = 0.001, 0.1, 0.3. The 1-� uncertainty bands are also shown. As expected, TMDs
are suppressed as k? grows and the suppression becomes relatively stronger as Q increases.
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with µb⇤ ⌘ µb(b⇤(bT )). The dependence on µ evidently cancels in the ratio. In addition,
for large values of bT µb⇤ saturates to some minimal value while µb becomes increasingly
small. As a consequence of this departure between µb⇤ and µb, as well as between

p
⇣ and

µb, the exponential in Eq. (2.37) tends to be suppressed, and so does fNP. Conversely, as
bT becomes small b⇤ approaches bmin. Using the definition in Eq. (2.33), it follows that µb⇤

saturates to Q while µb becomes larger and larger. In this limit, we have [51]

fNP �!
bT!0

1 + O
✓

1

Qp

◆
, (2.38)

where p is some positive number. Since TMD factorisation applies to leading-power in
qT /Q, we can neglect the power suppressed contribution such that fNP ! 1 for bT ! 0.
It is important to stress that the separation between perturbative and non-perturbative
components of a TMD is arbitrary and depends on the particular choice of b⇤ (or in general
on the prescription used to regularise the Landau pole). For any given choice, only the
combination in Eq. (2.36) is meaningful, and it is misleading to refer to fNP as to the
non-perturbative part of TMDs in a universal sense.

Following the requirements discussed above, we parameterise fNP as
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with Q0 = 1 GeV and with the g1(x) and g1B(x) functions given by
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(2.40)

There are a total of 9 free parameters (�, g2, g2B, N1, �, ↵, N1B, �B, ↵B) to be determined
from data.

Apart from the logarithmic dependence on ⇣, the functional form (2.39) is motivated by
empirical considerations. The first line parameterises the “intrinsic” TMD non-perturbative
contribution and it only depends on x and bT . The second line accounts for the non-
perturbative correction to the perturbative evolution. Therefore, it only depends on bT (on
top of the known dependence on ⇣).

The intrinsic contribution is a combination of a q-Gaussian (or Tsallis) distribution
(first term) and a standard Gaussian distribution (second term). The q-Gaussian has a
larger tail than the standard Gaussian, meaning that it gives a bigger contribution to the
TMD at small transverse momentum. We found that this combination is able to reproduce
the behaviour at very small qT of the experimental distributions from the lowest to the
highest energies considered in our analysis.
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• q-Guassian + Gaussian

• nontrivial x dependence

expression in bT space

Parameter Value
g2 0.036 ± 0.009
N1 0.625 ± 0.282
↵ 0.205 ± 0.010
� 0.370 ± 0.063
� 0.580 ± 0.092

N1B 0.044 ± 0.012
↵B 0.069 ± 0.009
�B 0.356 ± 0.075
g2B 0.012 ± 0.003

Table 5. Average and standard deviation over the Monte Carlo replicas of the free parameters
fitted to the data and graphical representation of the correlation matrix.

(2.40) can be gathered by looking at the statistical correlations between parameters. In
the right panel of Tab. 5, we show a graphical representation of the correlation matrix of
the fitted parameters. The first observation is that (off-diagonal) correlations are generally
not very large. There is however one exception, i.e. the parameters � and � seem to
be strongly anti-correlated. This may indicate that the interplay between q-Gaussian and
Gaussian may be significantly x dependent. We leave a deeper study of this feature to a
future publication.
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To conclude this section, in Fig. 5 we show the down-quark TMD at µ =
p

⇣ = Q =

2 GeV (left plot) and 10 GeV (right plot) as a function of the partonic transverse momentum
k? for x = 0.001, 0.1, 0.3. The 1-� uncertainty bands are also shown. As expected, TMDs
are suppressed as k? grows and the suppression becomes relatively stronger as Q increases.
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with µb⇤ ⌘ µb(b⇤(bT )). The dependence on µ evidently cancels in the ratio. In addition,
for large values of bT µb⇤ saturates to some minimal value while µb becomes increasingly
small. As a consequence of this departure between µb⇤ and µb, as well as between

p
⇣ and

µb, the exponential in Eq. (2.37) tends to be suppressed, and so does fNP. Conversely, as
bT becomes small b⇤ approaches bmin. Using the definition in Eq. (2.33), it follows that µb⇤

saturates to Q while µb becomes larger and larger. In this limit, we have [51]
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where p is some positive number. Since TMD factorisation applies to leading-power in
qT /Q, we can neglect the power suppressed contribution such that fNP ! 1 for bT ! 0.
It is important to stress that the separation between perturbative and non-perturbative
components of a TMD is arbitrary and depends on the particular choice of b⇤ (or in general
on the prescription used to regularise the Landau pole). For any given choice, only the
combination in Eq. (2.36) is meaningful, and it is misleading to refer to fNP as to the
non-perturbative part of TMDs in a universal sense.

Following the requirements discussed above, we parameterise fNP as
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with Q0 = 1 GeV and with the g1(x) and g1B(x) functions given by
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There are a total of 9 free parameters (�, g2, g2B, N1, �, ↵, N1B, �B, ↵B) to be determined
from data.

Apart from the logarithmic dependence on ⇣, the functional form (2.39) is motivated by
empirical considerations. The first line parameterises the “intrinsic” TMD non-perturbative
contribution and it only depends on x and bT . The second line accounts for the non-
perturbative correction to the perturbative evolution. Therefore, it only depends on bT (on
top of the known dependence on ⇣).

The intrinsic contribution is a combination of a q-Gaussian (or Tsallis) distribution
(first term) and a standard Gaussian distribution (second term). The q-Gaussian has a
larger tail than the standard Gaussian, meaning that it gives a bigger contribution to the
TMD at small transverse momentum. We found that this combination is able to reproduce
the behaviour at very small qT of the experimental distributions from the lowest to the
highest energies considered in our analysis.
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• q-Guassian + Gaussian

• nontrivial x dependence

• no flavor dependence

expression in bT space

Parameter Value
g2 0.036 ± 0.009
N1 0.625 ± 0.282
↵ 0.205 ± 0.010
� 0.370 ± 0.063
� 0.580 ± 0.092

N1B 0.044 ± 0.012
↵B 0.069 ± 0.009
�B 0.356 ± 0.075
g2B 0.012 ± 0.003

Table 5. Average and standard deviation over the Monte Carlo replicas of the free parameters
fitted to the data and graphical representation of the correlation matrix.

(2.40) can be gathered by looking at the statistical correlations between parameters. In
the right panel of Tab. 5, we show a graphical representation of the correlation matrix of
the fitted parameters. The first observation is that (off-diagonal) correlations are generally
not very large. There is however one exception, i.e. the parameters � and � seem to
be strongly anti-correlated. This may indicate that the interplay between q-Gaussian and
Gaussian may be significantly x dependent. We leave a deeper study of this feature to a
future publication.
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To conclude this section, in Fig. 5 we show the down-quark TMD at µ =
p

⇣ = Q =

2 GeV (left plot) and 10 GeV (right plot) as a function of the partonic transverse momentum
k? for x = 0.001, 0.1, 0.3. The 1-� uncertainty bands are also shown. As expected, TMDs
are suppressed as k? grows and the suppression becomes relatively stronger as Q increases.
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with µb⇤ ⌘ µb(b⇤(bT )). The dependence on µ evidently cancels in the ratio. In addition,
for large values of bT µb⇤ saturates to some minimal value while µb becomes increasingly
small. As a consequence of this departure between µb⇤ and µb, as well as between

p
⇣ and

µb, the exponential in Eq. (2.37) tends to be suppressed, and so does fNP. Conversely, as
bT becomes small b⇤ approaches bmin. Using the definition in Eq. (2.33), it follows that µb⇤

saturates to Q while µb becomes larger and larger. In this limit, we have [51]
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where p is some positive number. Since TMD factorisation applies to leading-power in
qT /Q, we can neglect the power suppressed contribution such that fNP ! 1 for bT ! 0.
It is important to stress that the separation between perturbative and non-perturbative
components of a TMD is arbitrary and depends on the particular choice of b⇤ (or in general
on the prescription used to regularise the Landau pole). For any given choice, only the
combination in Eq. (2.36) is meaningful, and it is misleading to refer to fNP as to the
non-perturbative part of TMDs in a universal sense.

Following the requirements discussed above, we parameterise fNP as
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with Q0 = 1 GeV and with the g1(x) and g1B(x) functions given by
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There are a total of 9 free parameters (�, g2, g2B, N1, �, ↵, N1B, �B, ↵B) to be determined
from data.

Apart from the logarithmic dependence on ⇣, the functional form (2.39) is motivated by
empirical considerations. The first line parameterises the “intrinsic” TMD non-perturbative
contribution and it only depends on x and bT . The second line accounts for the non-
perturbative correction to the perturbative evolution. Therefore, it only depends on bT (on
top of the known dependence on ⇣).

The intrinsic contribution is a combination of a q-Gaussian (or Tsallis) distribution
(first term) and a standard Gaussian distribution (second term). The q-Gaussian has a
larger tail than the standard Gaussian, meaning that it gives a bigger contribution to the
TMD at small transverse momentum. We found that this combination is able to reproduce
the behaviour at very small qT of the experimental distributions from the lowest to the
highest energies considered in our analysis.
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• q-Guassian + Gaussian

• nontrivial x dependence

• no flavor dependence

• non-Gaussian nonperturbative TMD evolution

expression in bT space

Parameter Value
g2 0.036 ± 0.009
N1 0.625 ± 0.282
↵ 0.205 ± 0.010
� 0.370 ± 0.063
� 0.580 ± 0.092

N1B 0.044 ± 0.012
↵B 0.069 ± 0.009
�B 0.356 ± 0.075
g2B 0.012 ± 0.003

Table 5. Average and standard deviation over the Monte Carlo replicas of the free parameters
fitted to the data and graphical representation of the correlation matrix.

(2.40) can be gathered by looking at the statistical correlations between parameters. In
the right panel of Tab. 5, we show a graphical representation of the correlation matrix of
the fitted parameters. The first observation is that (off-diagonal) correlations are generally
not very large. There is however one exception, i.e. the parameters � and � seem to
be strongly anti-correlated. This may indicate that the interplay between q-Gaussian and
Gaussian may be significantly x dependent. We leave a deeper study of this feature to a
future publication.
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To conclude this section, in Fig. 5 we show the down-quark TMD at µ =
p

⇣ = Q =

2 GeV (left plot) and 10 GeV (right plot) as a function of the partonic transverse momentum
k? for x = 0.001, 0.1, 0.3. The 1-� uncertainty bands are also shown. As expected, TMDs
are suppressed as k? grows and the suppression becomes relatively stronger as Q increases.
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with µb⇤ ⌘ µb(b⇤(bT )). The dependence on µ evidently cancels in the ratio. In addition,
for large values of bT µb⇤ saturates to some minimal value while µb becomes increasingly
small. As a consequence of this departure between µb⇤ and µb, as well as between

p
⇣ and

µb, the exponential in Eq. (2.37) tends to be suppressed, and so does fNP. Conversely, as
bT becomes small b⇤ approaches bmin. Using the definition in Eq. (2.33), it follows that µb⇤

saturates to Q while µb becomes larger and larger. In this limit, we have [51]
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where p is some positive number. Since TMD factorisation applies to leading-power in
qT /Q, we can neglect the power suppressed contribution such that fNP ! 1 for bT ! 0.
It is important to stress that the separation between perturbative and non-perturbative
components of a TMD is arbitrary and depends on the particular choice of b⇤ (or in general
on the prescription used to regularise the Landau pole). For any given choice, only the
combination in Eq. (2.36) is meaningful, and it is misleading to refer to fNP as to the
non-perturbative part of TMDs in a universal sense.
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There are a total of 9 free parameters (�, g2, g2B, N1, �, ↵, N1B, �B, ↵B) to be determined
from data.

Apart from the logarithmic dependence on ⇣, the functional form (2.39) is motivated by
empirical considerations. The first line parameterises the “intrinsic” TMD non-perturbative
contribution and it only depends on x and bT . The second line accounts for the non-
perturbative correction to the perturbative evolution. Therefore, it only depends on bT (on
top of the known dependence on ⇣).

The intrinsic contribution is a combination of a q-Gaussian (or Tsallis) distribution
(first term) and a standard Gaussian distribution (second term). The q-Gaussian has a
larger tail than the standard Gaussian, meaning that it gives a bigger contribution to the
TMD at small transverse momentum. We found that this combination is able to reproduce
the behaviour at very small qT of the experimental distributions from the lowest to the
highest energies considered in our analysis.
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• q-Guassian + Gaussian

• nontrivial x dependence

• no flavor dependence

• non-Gaussian nonperturbative TMD evolution

expression in bT space
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g2 0.036 ± 0.009
N1 0.625 ± 0.282
↵ 0.205 ± 0.010
� 0.370 ± 0.063
� 0.580 ± 0.092

N1B 0.044 ± 0.012
↵B 0.069 ± 0.009
�B 0.356 ± 0.075
g2B 0.012 ± 0.003

Table 5. Average and standard deviation over the Monte Carlo replicas of the free parameters
fitted to the data and graphical representation of the correlation matrix.

(2.40) can be gathered by looking at the statistical correlations between parameters. In
the right panel of Tab. 5, we show a graphical representation of the correlation matrix of
the fitted parameters. The first observation is that (off-diagonal) correlations are generally
not very large. There is however one exception, i.e. the parameters � and � seem to
be strongly anti-correlated. This may indicate that the interplay between q-Gaussian and
Gaussian may be significantly x dependent. We leave a deeper study of this feature to a
future publication.
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To conclude this section, in Fig. 5 we show the down-quark TMD at µ =
p

⇣ = Q =

2 GeV (left plot) and 10 GeV (right plot) as a function of the partonic transverse momentum
k? for x = 0.001, 0.1, 0.3. The 1-� uncertainty bands are also shown. As expected, TMDs
are suppressed as k? grows and the suppression becomes relatively stronger as Q increases.
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4. Low transverse momentum: phenomenology
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Figure 4.2: Comparison of the new COMPASS data [80] for SIDIS multiplicities, (4.3), to predic-
tions obtained with the TMD functions extracted from other data in [25]. In this figure: negative
hadron production o� a deuteron target.
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Figure 4.2: Comparison of the new COMPASS data [80] for SIDIS multiplicities, (4.3), to predic-
tions obtained with the TMD functions extracted from other data in [25]. In this figure: negative
hadron production o� a deuteron target.
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Figure 4.2: Comparison of the new COMPASS data [80] for SIDIS multiplicities, (4.3), to predic-
tions obtained with the TMD functions extracted from other data in [25]. In this figure: negative
hadron production o� a deuteron target.
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Figure 4.2: Comparison of the new COMPASS data [80] for SIDIS multiplicities, (4.3), to predic-
tions obtained with the TMD functions extracted from other data in [25]. In this figure: negative
hadron production o� a deuteron target.
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Figure 4.2: Comparison of the new COMPASS data [80] for SIDIS multiplicities, (4.3), to predic-
tions obtained with the TMD functions extracted from other data in [25]. In this figure: negative
hadron production o� a deuteron target.
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Figure 4.2: Comparison of the new COMPASS data [80] for SIDIS multiplicities, (4.3), to predic-
tions obtained with the TMD functions extracted from other data in [25]. In this figure: negative
hadron production o� a deuteron target.
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Figure 4.2: Comparison of the new COMPASS data [80] for SIDIS multiplicities, (4.3), to predic-
tions obtained with the TMD functions extracted from other data in [25]. In this figure: negative
hadron production o� a deuteron target.
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Figure 4.2: Comparison of the new COMPASS data [80] for SIDIS multiplicities, (4.3), to predic-
tions obtained with the TMD functions extracted from other data in [25]. In this figure: negative
hadron production o� a deuteron target.
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Analysis of revised SIDIS data 
from COMPASS
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Comparing the PV17 extraction 
with the new COMPASS data, 
without normalization factors, at 
NLL the agreement is very good 

from F. Piacenza’s PhD thesis
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Figure 4.2: Comparison of the new COMPASS data [80] for SIDIS multiplicities, (4.3), to predic-
tions obtained with the TMD functions extracted from other data in [25]. In this figure: negative
hadron production o� a deuteron target.
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Figure 4.2: Comparison of the new COMPASS data [80] for SIDIS multiplicities, (4.3), to predic-
tions obtained with the TMD functions extracted from other data in [25]. In this figure: negative
hadron production o� a deuteron target.
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Figure 4.2: Comparison of the new COMPASS data [80] for SIDIS multiplicities, (4.3), to predic-
tions obtained with the TMD functions extracted from other data in [25]. In this figure: negative
hadron production o� a deuteron target.
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Figure 4.2: Comparison of the new COMPASS data [80] for SIDIS multiplicities, (4.3), to predic-
tions obtained with the TMD functions extracted from other data in [25]. In this figure: negative
hadron production o� a deuteron target.

54

Analysis of revised SIDIS data 
from COMPASS

[ Phys.Rev. D97 (2018) no.3, 032006 ]

PRD97 (18)

Comparing the PV17 extraction 
with the new COMPASS data, 
without normalization factors, at 
NLL the agreement is very good 

from F. Piacenza’s PhD thesis

Going to NLL’ or NNLL the situation 
dramatically worsens! 
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Approximately follows the behaviour of Generalized Parton Model e.g.

Note however this is not an exact correspondence (and 
NO TMD evolution here) 

Torino’s group also 
confirmed that large 
normalisation factors 
have to be introduced 
to describe COMPASS 
data
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Figure 13. Differential cross-section for the Z/�⇤ boson production measured by ATLAS, CMS, LHCb
and PHENIX at different values of s and Q. The figure elements are the same as in fig. 12

�2/Npt NP-parameters

0.95 (NNLO)

RAD BNP = 1.93± 0.17 c0 = (3.91± 0.63)⇥ 10�2

TMDPDF �1 = 0.198± 0.019 �2 = 9.30± 0.55 �3 = 431.± 96.
�4 = 2.12± 0.09 �5 = �4.44± 1.05

TMDFF ⌘1 = 0.260± 0.015 ⌘2 = 0.476± 0.009
⌘3 = 0.478± 0.018 ⌘4 = 0.483± 0.030

1.06 (N3LO)

RAD BNP = 1.93± 0.22 c0 = (4.27± 1.05)⇥ 10�2

TMDPDF �1 = 0.224± 0.029 �2 = 9.24± 0.46 �3 = 375.± 89.
�4 = 2.15± 0.19 �5 = �4.97± 1.37

TMDFF
⌘1 = 0.233± 0.018 ⌘2 = 0.479± 0.025
⌘3 = 0.472± 0.041 ⌘4 = 0.511± 0.040

Table 9. Values of �2 and NP parameters obtained obtained in the global fit of DY and SIDIS data. The
collinear distributions are NNPDF31 and DSS.
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Figure 14. Differential cross-section for the Z/�⇤ boson production measured by CDF and D0 at different
values of s. The figure elements are the same as in fig. 12

Figure 15. Differential cross-section of DY process measured by E288 at different values of s and Q. The
solid (dashed) lines are the theory prediction at NNLO (N3LO) shifted by the average systematic shift (see
table 8). Filled (empty) point were (not) included in the fit of NP parameters.
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Figure 16. Differential cross-section of DY process measured by E605 and E772 at different values of s and
Q. The solid (dashed) lines are the theory prediction at NNLO (N3LO) shifted by the average systematic
shift (see table 8). Filled (empty) point were (not) included in the fit of NP parameters. For clarity the
data of E772 is multiplied by the factors indicated in the plot.

8.1 Non-perturbative RAD

In fig. 23 (left) we plot the RAD as a function of b with its uncertainty band. We present only the
RAD extracted with NNPDF31 fits, but the picture does not change significantly for all other PDF
sets. In this figure we can test the universality of the RAD looking at its extraction in DY and
DY+SIDIS. At small b the perturbative structure of the RAD dominates and we find practically
no difference in its behavior as coming from different fits. The difference between these two cases
happens at large b and it is at most of 10%. The 1�-uncertainty bands of DY and global fit do not
strictly overlap, which possibility indicates their underestimation.

In the same fig. 23 (left) we also compare our RAD with the one obtained in [18] and [19]. In
refs. [18, 19] a different shape of NP ansatz for RAD has been used, with a quadratic behavior at
large-b. Such an ansatz has been used often, and (as we have also checked) it is able to describe
the data. Nonetheless we disregard it because the global �2/Npt is worse (1.11 and 1.34 at NNLO
and N3LO, correspondingly), with much larger correlation between parameters. Additionally, the
linear asymptotic behavior used in our ansatz is supported by non-perturbative models. Possibly,
the uncertainty band is biased by this model, and the realistic band is larger by a factor two at
most.

In fig. 23 (right) we show the scattering of replicas in (BNP, c0)-plane collected from all fits. It
is clear that the parameters BNP and c0 are strongly anti-correlated (see also fig. 22) and this is
a consequence of the non-perturbative model, since the variation of c0 can be compensated by a
variation of BNP up to b4-corrections. The replicas of the global fit (orange points) are scattered in
a much smaller area and this provides a ⇠ 40% smaller error-bands on parameters. Generally, the
inclusion of the SIDIS data drastically constraints the values of BNP, and for that reason they are
very important for the determination of RAD. We conclude that the RAD extracted in the global
fit is more reliable, in comparison to the one done using DY data only.

The RAD that we have extracted is valid for all distributions and it has been used also to
describe the pion-induced DY [21]. For further reduction of the uncertainty of the RAD one should

– 43 –

Figure 20. Unpolarized SIDIS multiplicities (multiplied by z2) for production of negatively charged
hadrons off deuteron measured by COMPASS in different bins of x, z, Q and pT . Solid (dashed) lines
show the theory prediction at NNLO (N3LO). Filled (empty) points were (not) included in the fit of NP
parameters. For clarity each pT bin is shifted by an offset indicated in the legend. The continuation of the
picture is in fig. 21.

The TMD distributions show a non-trivial intrinsic structure. An example of distributions in
(x, b)-plane is presented in fig. 24. Depending on x the b�behavior apparently changes. We observe
(the same observation has been made in ref. [18]) that the unpolarized TMDFF gain a large b2-term
in the NP part. It could indicate a non-trivial hadronisation physics, or a tension between colinear
and TMD distributions. The study of its origin should be addressed by future studies.

9 Conclusion

Standing the TMD factorization of DY and SIDIS cross-section, one identifies at least three non-
perturbative QCD distributions in each cross-section – two TMD parton distributions and a non-
perturbative rapidity anomalous dimension (RAD). These functions should be extracted from the
experimental data. Given such a large number of phenomenological functions, their universality
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9 Conclusion
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perturbative QCD distributions in each cross-section – two TMD parton distributions and a non-
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Figure 19. Unpolarized SIDIS multiplicities (multiplied by z2) for production of positively charged
hadrons off deuteron measured by COMPASS in different bins of x, z, Q and pT . Solid (dashed) lines
show the theory prediction at NNLO (N3LO). Filled (empty) point were (not) included in the fit of NP
parameters. For clarity each pT bin is shifted by an offset indicated in the legend. The continuation of the
picture is in fig. 21.

consider more precise low- and intermediate-energy processes, such as up-coming JLab12 measure-
ments, and the future EIC.

8.2 TMD distributions

The quark TMDPDF and TMDFF are extracted simultaneously including high QCD perturbative
orders for the first time to our knowledge. The non-perturbative parameters obtained using the
PDF set NNPDF31 and the fragmentation set DSS are reported in table 9. Within one set of PDF
the error induced from the PDF replicas dominates the experimental error of TMD. Thus, the error
that we have reported on TMD parameters is certainly underestimated. To determine a realistic
uncertainty band , one must invent a flexible ansatz for NP-part of TMD distributions that does
not contradict the known theory. It appears to be a non-trivial task, which we leave for a future
study.
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Figure 13. Differential cross-section for the Z/�⇤ boson production measured by ATLAS, CMS, LHCb
and PHENIX at different values of s and Q. The figure elements are the same as in fig. 12
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TMDFF ⌘1 = 0.260± 0.015 ⌘2 = 0.476± 0.009
⌘3 = 0.478± 0.018 ⌘4 = 0.483± 0.030

1.06 (N3LO)

RAD BNP = 1.93± 0.22 c0 = (4.27± 1.05)⇥ 10�2

TMDPDF �1 = 0.224± 0.029 �2 = 9.24± 0.46 �3 = 375.± 89.
�4 = 2.15± 0.19 �5 = �4.97± 1.37

TMDFF
⌘1 = 0.233± 0.018 ⌘2 = 0.479± 0.025
⌘3 = 0.472± 0.041 ⌘4 = 0.511± 0.040

Table 9. Values of �2 and NP parameters obtained obtained in the global fit of DY and SIDIS data. The
collinear distributions are NNPDF31 and DSS.
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Figure 14. Differential cross-section for the Z/�⇤ boson production measured by CDF and D0 at different
values of s. The figure elements are the same as in fig. 12

Figure 15. Differential cross-section of DY process measured by E288 at different values of s and Q. The
solid (dashed) lines are the theory prediction at NNLO (N3LO) shifted by the average systematic shift (see
table 8). Filled (empty) point were (not) included in the fit of NP parameters.
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Figure 16. Differential cross-section of DY process measured by E605 and E772 at different values of s and
Q. The solid (dashed) lines are the theory prediction at NNLO (N3LO) shifted by the average systematic
shift (see table 8). Filled (empty) point were (not) included in the fit of NP parameters. For clarity the
data of E772 is multiplied by the factors indicated in the plot.

8.1 Non-perturbative RAD

In fig. 23 (left) we plot the RAD as a function of b with its uncertainty band. We present only the
RAD extracted with NNPDF31 fits, but the picture does not change significantly for all other PDF
sets. In this figure we can test the universality of the RAD looking at its extraction in DY and
DY+SIDIS. At small b the perturbative structure of the RAD dominates and we find practically
no difference in its behavior as coming from different fits. The difference between these two cases
happens at large b and it is at most of 10%. The 1�-uncertainty bands of DY and global fit do not
strictly overlap, which possibility indicates their underestimation.

In the same fig. 23 (left) we also compare our RAD with the one obtained in [18] and [19]. In
refs. [18, 19] a different shape of NP ansatz for RAD has been used, with a quadratic behavior at
large-b. Such an ansatz has been used often, and (as we have also checked) it is able to describe
the data. Nonetheless we disregard it because the global �2/Npt is worse (1.11 and 1.34 at NNLO
and N3LO, correspondingly), with much larger correlation between parameters. Additionally, the
linear asymptotic behavior used in our ansatz is supported by non-perturbative models. Possibly,
the uncertainty band is biased by this model, and the realistic band is larger by a factor two at
most.

In fig. 23 (right) we show the scattering of replicas in (BNP, c0)-plane collected from all fits. It
is clear that the parameters BNP and c0 are strongly anti-correlated (see also fig. 22) and this is
a consequence of the non-perturbative model, since the variation of c0 can be compensated by a
variation of BNP up to b4-corrections. The replicas of the global fit (orange points) are scattered in
a much smaller area and this provides a ⇠ 40% smaller error-bands on parameters. Generally, the
inclusion of the SIDIS data drastically constraints the values of BNP, and for that reason they are
very important for the determination of RAD. We conclude that the RAD extracted in the global
fit is more reliable, in comparison to the one done using DY data only.

The RAD that we have extracted is valid for all distributions and it has been used also to
describe the pion-induced DY [21]. For further reduction of the uncertainty of the RAD one should
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Figure 20. Unpolarized SIDIS multiplicities (multiplied by z2) for production of negatively charged
hadrons off deuteron measured by COMPASS in different bins of x, z, Q and pT . Solid (dashed) lines
show the theory prediction at NNLO (N3LO). Filled (empty) points were (not) included in the fit of NP
parameters. For clarity each pT bin is shifted by an offset indicated in the legend. The continuation of the
picture is in fig. 21.

The TMD distributions show a non-trivial intrinsic structure. An example of distributions in
(x, b)-plane is presented in fig. 24. Depending on x the b�behavior apparently changes. We observe
(the same observation has been made in ref. [18]) that the unpolarized TMDFF gain a large b2-term
in the NP part. It could indicate a non-trivial hadronisation physics, or a tension between colinear
and TMD distributions. The study of its origin should be addressed by future studies.

9 Conclusion

Standing the TMD factorization of DY and SIDIS cross-section, one identifies at least three non-
perturbative QCD distributions in each cross-section – two TMD parton distributions and a non-
perturbative rapidity anomalous dimension (RAD). These functions should be extracted from the
experimental data. Given such a large number of phenomenological functions, their universality
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Figure 19. Unpolarized SIDIS multiplicities (multiplied by z2) for production of positively charged
hadrons off deuteron measured by COMPASS in different bins of x, z, Q and pT . Solid (dashed) lines
show the theory prediction at NNLO (N3LO). Filled (empty) point were (not) included in the fit of NP
parameters. For clarity each pT bin is shifted by an offset indicated in the legend. The continuation of the
picture is in fig. 21.

consider more precise low- and intermediate-energy processes, such as up-coming JLab12 measure-
ments, and the future EIC.

8.2 TMD distributions

The quark TMDPDF and TMDFF are extracted simultaneously including high QCD perturbative
orders for the first time to our knowledge. The non-perturbative parameters obtained using the
PDF set NNPDF31 and the fragmentation set DSS are reported in table 9. Within one set of PDF
the error induced from the PDF replicas dominates the experimental error of TMD. Thus, the error
that we have reported on TMD parameters is certainly underestimated. To determine a realistic
uncertainty band , one must invent a flexible ansatz for NP-part of TMD distributions that does
not contradict the known theory. It appears to be a non-trivial task, which we leave for a future
study.
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Figure 13. Differential cross-section for the Z/�⇤ boson production measured by ATLAS, CMS, LHCb
and PHENIX at different values of s and Q. The figure elements are the same as in fig. 12

�2/Npt NP-parameters

0.95 (NNLO)

RAD BNP = 1.93± 0.17 c0 = (3.91± 0.63)⇥ 10�2

TMDPDF �1 = 0.198± 0.019 �2 = 9.30± 0.55 �3 = 431.± 96.
�4 = 2.12± 0.09 �5 = �4.44± 1.05

TMDFF ⌘1 = 0.260± 0.015 ⌘2 = 0.476± 0.009
⌘3 = 0.478± 0.018 ⌘4 = 0.483± 0.030

1.06 (N3LO)

RAD BNP = 1.93± 0.22 c0 = (4.27± 1.05)⇥ 10�2

TMDPDF �1 = 0.224± 0.029 �2 = 9.24± 0.46 �3 = 375.± 89.
�4 = 2.15± 0.19 �5 = �4.97± 1.37

TMDFF
⌘1 = 0.233± 0.018 ⌘2 = 0.479± 0.025
⌘3 = 0.472± 0.041 ⌘4 = 0.511± 0.040

Table 9. Values of �2 and NP parameters obtained obtained in the global fit of DY and SIDIS data. The
collinear distributions are NNPDF31 and DSS.
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Figure 14. Differential cross-section for the Z/�⇤ boson production measured by CDF and D0 at different
values of s. The figure elements are the same as in fig. 12

Figure 15. Differential cross-section of DY process measured by E288 at different values of s and Q. The
solid (dashed) lines are the theory prediction at NNLO (N3LO) shifted by the average systematic shift (see
table 8). Filled (empty) point were (not) included in the fit of NP parameters.
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Figure 16. Differential cross-section of DY process measured by E605 and E772 at different values of s and
Q. The solid (dashed) lines are the theory prediction at NNLO (N3LO) shifted by the average systematic
shift (see table 8). Filled (empty) point were (not) included in the fit of NP parameters. For clarity the
data of E772 is multiplied by the factors indicated in the plot.

8.1 Non-perturbative RAD

In fig. 23 (left) we plot the RAD as a function of b with its uncertainty band. We present only the
RAD extracted with NNPDF31 fits, but the picture does not change significantly for all other PDF
sets. In this figure we can test the universality of the RAD looking at its extraction in DY and
DY+SIDIS. At small b the perturbative structure of the RAD dominates and we find practically
no difference in its behavior as coming from different fits. The difference between these two cases
happens at large b and it is at most of 10%. The 1�-uncertainty bands of DY and global fit do not
strictly overlap, which possibility indicates their underestimation.

In the same fig. 23 (left) we also compare our RAD with the one obtained in [18] and [19]. In
refs. [18, 19] a different shape of NP ansatz for RAD has been used, with a quadratic behavior at
large-b. Such an ansatz has been used often, and (as we have also checked) it is able to describe
the data. Nonetheless we disregard it because the global �2/Npt is worse (1.11 and 1.34 at NNLO
and N3LO, correspondingly), with much larger correlation between parameters. Additionally, the
linear asymptotic behavior used in our ansatz is supported by non-perturbative models. Possibly,
the uncertainty band is biased by this model, and the realistic band is larger by a factor two at
most.

In fig. 23 (right) we show the scattering of replicas in (BNP, c0)-plane collected from all fits. It
is clear that the parameters BNP and c0 are strongly anti-correlated (see also fig. 22) and this is
a consequence of the non-perturbative model, since the variation of c0 can be compensated by a
variation of BNP up to b4-corrections. The replicas of the global fit (orange points) are scattered in
a much smaller area and this provides a ⇠ 40% smaller error-bands on parameters. Generally, the
inclusion of the SIDIS data drastically constraints the values of BNP, and for that reason they are
very important for the determination of RAD. We conclude that the RAD extracted in the global
fit is more reliable, in comparison to the one done using DY data only.

The RAD that we have extracted is valid for all distributions and it has been used also to
describe the pion-induced DY [21]. For further reduction of the uncertainty of the RAD one should
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Figure 20. Unpolarized SIDIS multiplicities (multiplied by z2) for production of negatively charged
hadrons off deuteron measured by COMPASS in different bins of x, z, Q and pT . Solid (dashed) lines
show the theory prediction at NNLO (N3LO). Filled (empty) points were (not) included in the fit of NP
parameters. For clarity each pT bin is shifted by an offset indicated in the legend. The continuation of the
picture is in fig. 21.

The TMD distributions show a non-trivial intrinsic structure. An example of distributions in
(x, b)-plane is presented in fig. 24. Depending on x the b�behavior apparently changes. We observe
(the same observation has been made in ref. [18]) that the unpolarized TMDFF gain a large b2-term
in the NP part. It could indicate a non-trivial hadronisation physics, or a tension between colinear
and TMD distributions. The study of its origin should be addressed by future studies.

9 Conclusion

Standing the TMD factorization of DY and SIDIS cross-section, one identifies at least three non-
perturbative QCD distributions in each cross-section – two TMD parton distributions and a non-
perturbative rapidity anomalous dimension (RAD). These functions should be extracted from the
experimental data. Given such a large number of phenomenological functions, their universality
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9 Conclusion
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Figure 19. Unpolarized SIDIS multiplicities (multiplied by z2) for production of positively charged
hadrons off deuteron measured by COMPASS in different bins of x, z, Q and pT . Solid (dashed) lines
show the theory prediction at NNLO (N3LO). Filled (empty) point were (not) included in the fit of NP
parameters. For clarity each pT bin is shifted by an offset indicated in the legend. The continuation of the
picture is in fig. 21.

consider more precise low- and intermediate-energy processes, such as up-coming JLab12 measure-
ments, and the future EIC.

8.2 TMD distributions

The quark TMDPDF and TMDFF are extracted simultaneously including high QCD perturbative
orders for the first time to our knowledge. The non-perturbative parameters obtained using the
PDF set NNPDF31 and the fragmentation set DSS are reported in table 9. Within one set of PDF
the error induced from the PDF replicas dominates the experimental error of TMD. Thus, the error
that we have reported on TMD parameters is certainly underestimated. To determine a realistic
uncertainty band , one must invent a flexible ansatz for NP-part of TMD distributions that does
not contradict the known theory. It appears to be a non-trivial task, which we leave for a future
study.
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Figure 13. Differential cross-section for the Z/�⇤ boson production measured by ATLAS, CMS, LHCb
and PHENIX at different values of s and Q. The figure elements are the same as in fig. 12

�2/Npt NP-parameters

0.95 (NNLO)

RAD BNP = 1.93± 0.17 c0 = (3.91± 0.63)⇥ 10�2

TMDPDF �1 = 0.198± 0.019 �2 = 9.30± 0.55 �3 = 431.± 96.
�4 = 2.12± 0.09 �5 = �4.44± 1.05

TMDFF ⌘1 = 0.260± 0.015 ⌘2 = 0.476± 0.009
⌘3 = 0.478± 0.018 ⌘4 = 0.483± 0.030

1.06 (N3LO)

RAD BNP = 1.93± 0.22 c0 = (4.27± 1.05)⇥ 10�2

TMDPDF �1 = 0.224± 0.029 �2 = 9.24± 0.46 �3 = 375.± 89.
�4 = 2.15± 0.19 �5 = �4.97± 1.37

TMDFF
⌘1 = 0.233± 0.018 ⌘2 = 0.479± 0.025
⌘3 = 0.472± 0.041 ⌘4 = 0.511± 0.040

Table 9. Values of �2 and NP parameters obtained obtained in the global fit of DY and SIDIS data. The
collinear distributions are NNPDF31 and DSS.
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Figure 14. Differential cross-section for the Z/�⇤ boson production measured by CDF and D0 at different
values of s. The figure elements are the same as in fig. 12

Figure 15. Differential cross-section of DY process measured by E288 at different values of s and Q. The
solid (dashed) lines are the theory prediction at NNLO (N3LO) shifted by the average systematic shift (see
table 8). Filled (empty) point were (not) included in the fit of NP parameters.
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Figure 16. Differential cross-section of DY process measured by E605 and E772 at different values of s and
Q. The solid (dashed) lines are the theory prediction at NNLO (N3LO) shifted by the average systematic
shift (see table 8). Filled (empty) point were (not) included in the fit of NP parameters. For clarity the
data of E772 is multiplied by the factors indicated in the plot.

8.1 Non-perturbative RAD

In fig. 23 (left) we plot the RAD as a function of b with its uncertainty band. We present only the
RAD extracted with NNPDF31 fits, but the picture does not change significantly for all other PDF
sets. In this figure we can test the universality of the RAD looking at its extraction in DY and
DY+SIDIS. At small b the perturbative structure of the RAD dominates and we find practically
no difference in its behavior as coming from different fits. The difference between these two cases
happens at large b and it is at most of 10%. The 1�-uncertainty bands of DY and global fit do not
strictly overlap, which possibility indicates their underestimation.

In the same fig. 23 (left) we also compare our RAD with the one obtained in [18] and [19]. In
refs. [18, 19] a different shape of NP ansatz for RAD has been used, with a quadratic behavior at
large-b. Such an ansatz has been used often, and (as we have also checked) it is able to describe
the data. Nonetheless we disregard it because the global �2/Npt is worse (1.11 and 1.34 at NNLO
and N3LO, correspondingly), with much larger correlation between parameters. Additionally, the
linear asymptotic behavior used in our ansatz is supported by non-perturbative models. Possibly,
the uncertainty band is biased by this model, and the realistic band is larger by a factor two at
most.

In fig. 23 (right) we show the scattering of replicas in (BNP, c0)-plane collected from all fits. It
is clear that the parameters BNP and c0 are strongly anti-correlated (see also fig. 22) and this is
a consequence of the non-perturbative model, since the variation of c0 can be compensated by a
variation of BNP up to b4-corrections. The replicas of the global fit (orange points) are scattered in
a much smaller area and this provides a ⇠ 40% smaller error-bands on parameters. Generally, the
inclusion of the SIDIS data drastically constraints the values of BNP, and for that reason they are
very important for the determination of RAD. We conclude that the RAD extracted in the global
fit is more reliable, in comparison to the one done using DY data only.

The RAD that we have extracted is valid for all distributions and it has been used also to
describe the pion-induced DY [21]. For further reduction of the uncertainty of the RAD one should
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Figure 20. Unpolarized SIDIS multiplicities (multiplied by z2) for production of negatively charged
hadrons off deuteron measured by COMPASS in different bins of x, z, Q and pT . Solid (dashed) lines
show the theory prediction at NNLO (N3LO). Filled (empty) points were (not) included in the fit of NP
parameters. For clarity each pT bin is shifted by an offset indicated in the legend. The continuation of the
picture is in fig. 21.

The TMD distributions show a non-trivial intrinsic structure. An example of distributions in
(x, b)-plane is presented in fig. 24. Depending on x the b�behavior apparently changes. We observe
(the same observation has been made in ref. [18]) that the unpolarized TMDFF gain a large b2-term
in the NP part. It could indicate a non-trivial hadronisation physics, or a tension between colinear
and TMD distributions. The study of its origin should be addressed by future studies.
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Standing the TMD factorization of DY and SIDIS cross-section, one identifies at least three non-
perturbative QCD distributions in each cross-section – two TMD parton distributions and a non-
perturbative rapidity anomalous dimension (RAD). These functions should be extracted from the
experimental data. Given such a large number of phenomenological functions, their universality
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Figure 20. Unpolarized SIDIS multiplicities (multiplied by z2) for production of negatively charged
hadrons off deuteron measured by COMPASS in different bins of x, z, Q and pT . Solid (dashed) lines
show the theory prediction at NNLO (N3LO). Filled (empty) points were (not) included in the fit of NP
parameters. For clarity each pT bin is shifted by an offset indicated in the legend. The continuation of the
picture is in fig. 21.

The TMD distributions show a non-trivial intrinsic structure. An example of distributions in
(x, b)-plane is presented in fig. 24. Depending on x the b�behavior apparently changes. We observe
(the same observation has been made in ref. [18]) that the unpolarized TMDFF gain a large b2-term
in the NP part. It could indicate a non-trivial hadronisation physics, or a tension between colinear
and TMD distributions. The study of its origin should be addressed by future studies.
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Figure 19. Unpolarized SIDIS multiplicities (multiplied by z2) for production of positively charged
hadrons off deuteron measured by COMPASS in different bins of x, z, Q and pT . Solid (dashed) lines
show the theory prediction at NNLO (N3LO). Filled (empty) point were (not) included in the fit of NP
parameters. For clarity each pT bin is shifted by an offset indicated in the legend. The continuation of the
picture is in fig. 21.

consider more precise low- and intermediate-energy processes, such as up-coming JLab12 measure-
ments, and the future EIC.

8.2 TMD distributions

The quark TMDPDF and TMDFF are extracted simultaneously including high QCD perturbative
orders for the first time to our knowledge. The non-perturbative parameters obtained using the
PDF set NNPDF31 and the fragmentation set DSS are reported in table 9. Within one set of PDF
the error induced from the PDF replicas dominates the experimental error of TMD. Thus, the error
that we have reported on TMD parameters is certainly underestimated. To determine a realistic
uncertainty band , one must invent a flexible ansatz for NP-part of TMD distributions that does
not contradict the known theory. It appears to be a non-trivial task, which we leave for a future
study.
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(see also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are
even-functions of b that turn to unity for b ! 0. We use the following parameterizations

fNP (x, b) = exp

 
��1(1� x) + �2x+ x(1� x)�5p

1 + �3x�4b2
b2
!
, (2.84)

DNP (x, b) = exp

 
�⌘1z + ⌘2(1� z)p

1 + ⌘3(b/z)2
b2

z2

!✓
1 + ⌘4

b2

z2

◆
, (2.85)

and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description
of the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more
parameters in [18]). In both cases the function has exponential or Gaussian form depending on
the relative size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space
�1,2,3 > 0, ⌘1,2,3 > 0, �5 & �2(�1 + �2), due to demand that TMD distribution is null b ! 1.

The ansatz for the non-perturbative part of the RAD has different form, because one expects
a different behavior at large-b. We use the following expression suggested in [20],

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.86)

where

b⇤(b) =
bp

1 + b2/B2
NP

. (2.87)

The function Dresum is the resummed perturbative expansion of RAD [11, 49] reported in the
appendix B. At LO it reads

DLO
resum = � �0

2�0
ln (1� �0as(µ)Lµ) . (2.88)

The higher order expressions (up to N3LO) are given in eq. (B.5). The parameters c0 and BNP

are free positive parameters, in principle totally uncorrelated from the rest of non-perturbative
parameters.

The resummed expression for RAD explicitly has the singularity in b (see e.g. eq. (2.88)). The
singularity designates the convergence radius of the perturbative expression. Consequently, the
perturbative behavior must be turned off well before b approaches the singularity. In the ansatz in
eq. (2.86), this is achieved freezing the perturbative part at b ⇠ BNP. The singularity is located
at �0as(µ)Lµ = 1 and thus, the value of BNP is restricted from above by: BNP . 2e��E⇤�1

QCD ⇡
4GeV�1.

At large-b the non-perturbative expression for RAD in eq. (2.86) is asymptotically linear in b,
D ⇠ c0BNPb. Such a behavior is different from the typical quadratic form. The linear behavior is
suggested by model calculations of the RAD [54, 55], and the coefficient c0 can be related to the
QCD string tension.

The special null-evolution line can be incorporated both at perturbative and non-perturbative
level. In [19] and [20] the special null-evolution line included only its perturbative part for simplicity.
This part is the most important one because it guarantees the cancellation of double-logarithms
in the matching coefficient. However, at large-b, the non-perturbative corrections to the RAD are
large and cannot be ignored: in [19] they can be seen as a part of the non-perturbative model,
at the price of introducing an undesired correlation between fNP and D. In order to adjust the
null-evolution curve with a non-perturbative RAD one has to solve eq. (2.70) including the RAD
in the full generality. Such solution can be found in principle, but its numerical implementation is
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and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description
of the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more
parameters in [18]). In both cases the function has exponential or Gaussian form depending on
the relative size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space
�1,2,3 > 0, ⌘1,2,3 > 0, �5 & �2(�1 + �2), due to demand that TMD distribution is null b ! 1.

The ansatz for the non-perturbative part of the RAD has different form, because one expects
a different behavior at large-b. We use the following expression suggested in [20],

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.86)

where

b⇤(b) =
bp

1 + b2/B2
NP

. (2.87)
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appendix B. At LO it reads
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The higher order expressions (up to N3LO) are given in eq. (B.5). The parameters c0 and BNP

are free positive parameters, in principle totally uncorrelated from the rest of non-perturbative
parameters.

The resummed expression for RAD explicitly has the singularity in b (see e.g. eq. (2.88)). The
singularity designates the convergence radius of the perturbative expression. Consequently, the
perturbative behavior must be turned off well before b approaches the singularity. In the ansatz in
eq. (2.86), this is achieved freezing the perturbative part at b ⇠ BNP. The singularity is located
at �0as(µ)Lµ = 1 and thus, the value of BNP is restricted from above by: BNP . 2e��E⇤�1
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4GeV�1.

At large-b the non-perturbative expression for RAD in eq. (2.86) is asymptotically linear in b,
D ⇠ c0BNPb. Such a behavior is different from the typical quadratic form. The linear behavior is
suggested by model calculations of the RAD [54, 55], and the coefficient c0 can be related to the
QCD string tension.

The special null-evolution line can be incorporated both at perturbative and non-perturbative
level. In [19] and [20] the special null-evolution line included only its perturbative part for simplicity.
This part is the most important one because it guarantees the cancellation of double-logarithms
in the matching coefficient. However, at large-b, the non-perturbative corrections to the RAD are
large and cannot be ignored: in [19] they can be seen as a part of the non-perturbative model,
at the price of introducing an undesired correlation between fNP and D. In order to adjust the
null-evolution curve with a non-perturbative RAD one has to solve eq. (2.70) including the RAD
in the full generality. Such solution can be found in principle, but its numerical implementation is
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Figure 23. (left) Comparison of NNLO RAD extracted in DY fit (NNPDF31), and global fit of DY
and SIDIS (NNPDF31& DSS). Shaded area shows the 1�-uncertainty band. The dashed lines show the
extraction made in refs.[18] and [19] at LO and NNLO of RAD correspondingly. (right) Distribution of
replica points in different fits of RAD. Dashed lines show the mean values of RAD extracted in the global
fit of DY and SIDIS.

Figure 24. Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band

plays a crucial role. In this work, we have shown that the TMD distributions and RAD are indeed
universal functions.

In order to confirm the universality statement, we have firstly extracted the RAD (D) and the
unpolarized TMDPDF (f1) from the DY data, and secondly we have used them to describe the
SIDIS data (extracting in addition the unpolarized TMDFF, D1). To our best knowledge, this is
the first clear-cut demonstration of the universality of the TMD non-perturbative components. This
demonstration is the main result of this work. The subsidiary results are the values of extracted
unpolarized TMD distributions and RAD, that could be used to predict and describe the low-qT
spectrum of current (LHC, COMPASS, RHIC) and future (EIC, LHeC) experiments.

The sets of data included in this analysis contain in total 1039 points (almost equally dis-
tributed between SIDIS, 582 points, and DY, 457 points). We have the data from fixed target DY
measurements, Tevatron, RHIC, LHC, COMPASS, and HERMES. Unfortunately, only low-energy
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(see also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are
even-functions of b that turn to unity for b ! 0. We use the following parameterizations
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and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description
of the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more
parameters in [18]). In both cases the function has exponential or Gaussian form depending on
the relative size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space
�1,2,3 > 0, ⌘1,2,3 > 0, �5 & �2(�1 + �2), due to demand that TMD distribution is null b ! 1.

The ansatz for the non-perturbative part of the RAD has different form, because one expects
a different behavior at large-b. We use the following expression suggested in [20],

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.86)

where
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The function Dresum is the resummed perturbative expansion of RAD [11, 49] reported in the
appendix B. At LO it reads

DLO
resum = � �0

2�0
ln (1� �0as(µ)Lµ) . (2.88)

The higher order expressions (up to N3LO) are given in eq. (B.5). The parameters c0 and BNP

are free positive parameters, in principle totally uncorrelated from the rest of non-perturbative
parameters.

The resummed expression for RAD explicitly has the singularity in b (see e.g. eq. (2.88)). The
singularity designates the convergence radius of the perturbative expression. Consequently, the
perturbative behavior must be turned off well before b approaches the singularity. In the ansatz in
eq. (2.86), this is achieved freezing the perturbative part at b ⇠ BNP. The singularity is located
at �0as(µ)Lµ = 1 and thus, the value of BNP is restricted from above by: BNP . 2e��E⇤�1

QCD ⇡
4GeV�1.

At large-b the non-perturbative expression for RAD in eq. (2.86) is asymptotically linear in b,
D ⇠ c0BNPb. Such a behavior is different from the typical quadratic form. The linear behavior is
suggested by model calculations of the RAD [54, 55], and the coefficient c0 can be related to the
QCD string tension.

The special null-evolution line can be incorporated both at perturbative and non-perturbative
level. In [19] and [20] the special null-evolution line included only its perturbative part for simplicity.
This part is the most important one because it guarantees the cancellation of double-logarithms
in the matching coefficient. However, at large-b, the non-perturbative corrections to the RAD are
large and cannot be ignored: in [19] they can be seen as a part of the non-perturbative model,
at the price of introducing an undesired correlation between fNP and D. In order to adjust the
null-evolution curve with a non-perturbative RAD one has to solve eq. (2.70) including the RAD
in the full generality. Such solution can be found in principle, but its numerical implementation is
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Figure 23. (left) Comparison of NNLO RAD extracted in DY fit (NNPDF31), and global fit of DY
and SIDIS (NNPDF31& DSS). Shaded area shows the 1�-uncertainty band. The dashed lines show the
extraction made in refs.[18] and [19] at LO and NNLO of RAD correspondingly. (right) Distribution of
replica points in different fits of RAD. Dashed lines show the mean values of RAD extracted in the global
fit of DY and SIDIS.

Figure 24. Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band

plays a crucial role. In this work, we have shown that the TMD distributions and RAD are indeed
universal functions.

In order to confirm the universality statement, we have firstly extracted the RAD (D) and the
unpolarized TMDPDF (f1) from the DY data, and secondly we have used them to describe the
SIDIS data (extracting in addition the unpolarized TMDFF, D1). To our best knowledge, this is
the first clear-cut demonstration of the universality of the TMD non-perturbative components. This
demonstration is the main result of this work. The subsidiary results are the values of extracted
unpolarized TMD distributions and RAD, that could be used to predict and describe the low-qT
spectrum of current (LHC, COMPASS, RHIC) and future (EIC, LHeC) experiments.

The sets of data included in this analysis contain in total 1039 points (almost equally dis-
tributed between SIDIS, 582 points, and DY, 457 points). We have the data from fixed target DY
measurements, Tevatron, RHIC, LHC, COMPASS, and HERMES. Unfortunately, only low-energy
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(see also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are
even-functions of b that turn to unity for b ! 0. We use the following parameterizations

fNP (x, b) = exp
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and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description
of the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more
parameters in [18]). In both cases the function has exponential or Gaussian form depending on
the relative size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space
�1,2,3 > 0, ⌘1,2,3 > 0, �5 & �2(�1 + �2), due to demand that TMD distribution is null b ! 1.

The ansatz for the non-perturbative part of the RAD has different form, because one expects
a different behavior at large-b. We use the following expression suggested in [20],

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.86)

where

b⇤(b) =
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The function Dresum is the resummed perturbative expansion of RAD [11, 49] reported in the
appendix B. At LO it reads

DLO
resum = � �0

2�0
ln (1� �0as(µ)Lµ) . (2.88)

The higher order expressions (up to N3LO) are given in eq. (B.5). The parameters c0 and BNP

are free positive parameters, in principle totally uncorrelated from the rest of non-perturbative
parameters.

The resummed expression for RAD explicitly has the singularity in b (see e.g. eq. (2.88)). The
singularity designates the convergence radius of the perturbative expression. Consequently, the
perturbative behavior must be turned off well before b approaches the singularity. In the ansatz in
eq. (2.86), this is achieved freezing the perturbative part at b ⇠ BNP. The singularity is located
at �0as(µ)Lµ = 1 and thus, the value of BNP is restricted from above by: BNP . 2e��E⇤�1

QCD ⇡
4GeV�1.

At large-b the non-perturbative expression for RAD in eq. (2.86) is asymptotically linear in b,
D ⇠ c0BNPb. Such a behavior is different from the typical quadratic form. The linear behavior is
suggested by model calculations of the RAD [54, 55], and the coefficient c0 can be related to the
QCD string tension.

The special null-evolution line can be incorporated both at perturbative and non-perturbative
level. In [19] and [20] the special null-evolution line included only its perturbative part for simplicity.
This part is the most important one because it guarantees the cancellation of double-logarithms
in the matching coefficient. However, at large-b, the non-perturbative corrections to the RAD are
large and cannot be ignored: in [19] they can be seen as a part of the non-perturbative model,
at the price of introducing an undesired correlation between fNP and D. In order to adjust the
null-evolution curve with a non-perturbative RAD one has to solve eq. (2.70) including the RAD
in the full generality. Such solution can be found in principle, but its numerical implementation is
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Figure 23. (left) Comparison of NNLO RAD extracted in DY fit (NNPDF31), and global fit of DY
and SIDIS (NNPDF31& DSS). Shaded area shows the 1�-uncertainty band. The dashed lines show the
extraction made in refs.[18] and [19] at LO and NNLO of RAD correspondingly. (right) Distribution of
replica points in different fits of RAD. Dashed lines show the mean values of RAD extracted in the global
fit of DY and SIDIS.

Figure 24. Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band

plays a crucial role. In this work, we have shown that the TMD distributions and RAD are indeed
universal functions.

In order to confirm the universality statement, we have firstly extracted the RAD (D) and the
unpolarized TMDPDF (f1) from the DY data, and secondly we have used them to describe the
SIDIS data (extracting in addition the unpolarized TMDFF, D1). To our best knowledge, this is
the first clear-cut demonstration of the universality of the TMD non-perturbative components. This
demonstration is the main result of this work. The subsidiary results are the values of extracted
unpolarized TMD distributions and RAD, that could be used to predict and describe the low-qT
spectrum of current (LHC, COMPASS, RHIC) and future (EIC, LHeC) experiments.

The sets of data included in this analysis contain in total 1039 points (almost equally dis-
tributed between SIDIS, 582 points, and DY, 457 points). We have the data from fixed target DY
measurements, Tevatron, RHIC, LHC, COMPASS, and HERMES. Unfortunately, only low-energy
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(see also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are
even-functions of b that turn to unity for b ! 0. We use the following parameterizations
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and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description
of the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more
parameters in [18]). In both cases the function has exponential or Gaussian form depending on
the relative size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space
�1,2,3 > 0, ⌘1,2,3 > 0, �5 & �2(�1 + �2), due to demand that TMD distribution is null b ! 1.

The ansatz for the non-perturbative part of the RAD has different form, because one expects
a different behavior at large-b. We use the following expression suggested in [20],
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where
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The function Dresum is the resummed perturbative expansion of RAD [11, 49] reported in the
appendix B. At LO it reads

DLO
resum = � �0
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The higher order expressions (up to N3LO) are given in eq. (B.5). The parameters c0 and BNP

are free positive parameters, in principle totally uncorrelated from the rest of non-perturbative
parameters.

The resummed expression for RAD explicitly has the singularity in b (see e.g. eq. (2.88)). The
singularity designates the convergence radius of the perturbative expression. Consequently, the
perturbative behavior must be turned off well before b approaches the singularity. In the ansatz in
eq. (2.86), this is achieved freezing the perturbative part at b ⇠ BNP. The singularity is located
at �0as(µ)Lµ = 1 and thus, the value of BNP is restricted from above by: BNP . 2e��E⇤�1

QCD ⇡
4GeV�1.

At large-b the non-perturbative expression for RAD in eq. (2.86) is asymptotically linear in b,
D ⇠ c0BNPb. Such a behavior is different from the typical quadratic form. The linear behavior is
suggested by model calculations of the RAD [54, 55], and the coefficient c0 can be related to the
QCD string tension.

The special null-evolution line can be incorporated both at perturbative and non-perturbative
level. In [19] and [20] the special null-evolution line included only its perturbative part for simplicity.
This part is the most important one because it guarantees the cancellation of double-logarithms
in the matching coefficient. However, at large-b, the non-perturbative corrections to the RAD are
large and cannot be ignored: in [19] they can be seen as a part of the non-perturbative model,
at the price of introducing an undesired correlation between fNP and D. In order to adjust the
null-evolution curve with a non-perturbative RAD one has to solve eq. (2.70) including the RAD
in the full generality. Such solution can be found in principle, but its numerical implementation is
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Figure 23. (left) Comparison of NNLO RAD extracted in DY fit (NNPDF31), and global fit of DY
and SIDIS (NNPDF31& DSS). Shaded area shows the 1�-uncertainty band. The dashed lines show the
extraction made in refs.[18] and [19] at LO and NNLO of RAD correspondingly. (right) Distribution of
replica points in different fits of RAD. Dashed lines show the mean values of RAD extracted in the global
fit of DY and SIDIS.

Figure 24. Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band

plays a crucial role. In this work, we have shown that the TMD distributions and RAD are indeed
universal functions.

In order to confirm the universality statement, we have firstly extracted the RAD (D) and the
unpolarized TMDPDF (f1) from the DY data, and secondly we have used them to describe the
SIDIS data (extracting in addition the unpolarized TMDFF, D1). To our best knowledge, this is
the first clear-cut demonstration of the universality of the TMD non-perturbative components. This
demonstration is the main result of this work. The subsidiary results are the values of extracted
unpolarized TMD distributions and RAD, that could be used to predict and describe the low-qT
spectrum of current (LHC, COMPASS, RHIC) and future (EIC, LHeC) experiments.

The sets of data included in this analysis contain in total 1039 points (almost equally dis-
tributed between SIDIS, 582 points, and DY, 457 points). We have the data from fixed target DY
measurements, Tevatron, RHIC, LHC, COMPASS, and HERMES. Unfortunately, only low-energy
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(see also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are
even-functions of b that turn to unity for b ! 0. We use the following parameterizations

fNP (x, b) = exp

 
��1(1� x) + �2x+ x(1� x)�5p

1 + �3x�4b2
b2
!
, (2.84)

DNP (x, b) = exp

 
�⌘1z + ⌘2(1� z)p

1 + ⌘3(b/z)2
b2

z2

!✓
1 + ⌘4

b2

z2

◆
, (2.85)

and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description
of the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more
parameters in [18]). In both cases the function has exponential or Gaussian form depending on
the relative size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space
�1,2,3 > 0, ⌘1,2,3 > 0, �5 & �2(�1 + �2), due to demand that TMD distribution is null b ! 1.

The ansatz for the non-perturbative part of the RAD has different form, because one expects
a different behavior at large-b. We use the following expression suggested in [20],

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.86)

where

b⇤(b) =
bp

1 + b2/B2
NP

. (2.87)

The function Dresum is the resummed perturbative expansion of RAD [11, 49] reported in the
appendix B. At LO it reads

DLO
resum = � �0

2�0
ln (1� �0as(µ)Lµ) . (2.88)

The higher order expressions (up to N3LO) are given in eq. (B.5). The parameters c0 and BNP

are free positive parameters, in principle totally uncorrelated from the rest of non-perturbative
parameters.

The resummed expression for RAD explicitly has the singularity in b (see e.g. eq. (2.88)). The
singularity designates the convergence radius of the perturbative expression. Consequently, the
perturbative behavior must be turned off well before b approaches the singularity. In the ansatz in
eq. (2.86), this is achieved freezing the perturbative part at b ⇠ BNP. The singularity is located
at �0as(µ)Lµ = 1 and thus, the value of BNP is restricted from above by: BNP . 2e��E⇤�1

QCD ⇡
4GeV�1.

At large-b the non-perturbative expression for RAD in eq. (2.86) is asymptotically linear in b,
D ⇠ c0BNPb. Such a behavior is different from the typical quadratic form. The linear behavior is
suggested by model calculations of the RAD [54, 55], and the coefficient c0 can be related to the
QCD string tension.

The special null-evolution line can be incorporated both at perturbative and non-perturbative
level. In [19] and [20] the special null-evolution line included only its perturbative part for simplicity.
This part is the most important one because it guarantees the cancellation of double-logarithms
in the matching coefficient. However, at large-b, the non-perturbative corrections to the RAD are
large and cannot be ignored: in [19] they can be seen as a part of the non-perturbative model,
at the price of introducing an undesired correlation between fNP and D. In order to adjust the
null-evolution curve with a non-perturbative RAD one has to solve eq. (2.70) including the RAD
in the full generality. Such solution can be found in principle, but its numerical implementation is
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Figure 23. (left) Comparison of NNLO RAD extracted in DY fit (NNPDF31), and global fit of DY
and SIDIS (NNPDF31& DSS). Shaded area shows the 1�-uncertainty band. The dashed lines show the
extraction made in refs.[18] and [19] at LO and NNLO of RAD correspondingly. (right) Distribution of
replica points in different fits of RAD. Dashed lines show the mean values of RAD extracted in the global
fit of DY and SIDIS.

Figure 24. Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band

plays a crucial role. In this work, we have shown that the TMD distributions and RAD are indeed
universal functions.

In order to confirm the universality statement, we have firstly extracted the RAD (D) and the
unpolarized TMDPDF (f1) from the DY data, and secondly we have used them to describe the
SIDIS data (extracting in addition the unpolarized TMDFF, D1). To our best knowledge, this is
the first clear-cut demonstration of the universality of the TMD non-perturbative components. This
demonstration is the main result of this work. The subsidiary results are the values of extracted
unpolarized TMD distributions and RAD, that could be used to predict and describe the low-qT
spectrum of current (LHC, COMPASS, RHIC) and future (EIC, LHeC) experiments.

The sets of data included in this analysis contain in total 1039 points (almost equally dis-
tributed between SIDIS, 582 points, and DY, 457 points). We have the data from fixed target DY
measurements, Tevatron, RHIC, LHC, COMPASS, and HERMES. Unfortunately, only low-energy
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(see also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are
even-functions of b that turn to unity for b ! 0. We use the following parameterizations

fNP (x, b) = exp

 
��1(1� x) + �2x+ x(1� x)�5p

1 + �3x�4b2
b2
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, (2.84)

DNP (x, b) = exp
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b2

z2

!✓
1 + ⌘4
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and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description
of the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more
parameters in [18]). In both cases the function has exponential or Gaussian form depending on
the relative size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space
�1,2,3 > 0, ⌘1,2,3 > 0, �5 & �2(�1 + �2), due to demand that TMD distribution is null b ! 1.

The ansatz for the non-perturbative part of the RAD has different form, because one expects
a different behavior at large-b. We use the following expression suggested in [20],

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.86)

where

b⇤(b) =
bp

1 + b2/B2
NP

. (2.87)

The function Dresum is the resummed perturbative expansion of RAD [11, 49] reported in the
appendix B. At LO it reads

DLO
resum = � �0

2�0
ln (1� �0as(µ)Lµ) . (2.88)

The higher order expressions (up to N3LO) are given in eq. (B.5). The parameters c0 and BNP

are free positive parameters, in principle totally uncorrelated from the rest of non-perturbative
parameters.

The resummed expression for RAD explicitly has the singularity in b (see e.g. eq. (2.88)). The
singularity designates the convergence radius of the perturbative expression. Consequently, the
perturbative behavior must be turned off well before b approaches the singularity. In the ansatz in
eq. (2.86), this is achieved freezing the perturbative part at b ⇠ BNP. The singularity is located
at �0as(µ)Lµ = 1 and thus, the value of BNP is restricted from above by: BNP . 2e��E⇤�1

QCD ⇡
4GeV�1.

At large-b the non-perturbative expression for RAD in eq. (2.86) is asymptotically linear in b,
D ⇠ c0BNPb. Such a behavior is different from the typical quadratic form. The linear behavior is
suggested by model calculations of the RAD [54, 55], and the coefficient c0 can be related to the
QCD string tension.

The special null-evolution line can be incorporated both at perturbative and non-perturbative
level. In [19] and [20] the special null-evolution line included only its perturbative part for simplicity.
This part is the most important one because it guarantees the cancellation of double-logarithms
in the matching coefficient. However, at large-b, the non-perturbative corrections to the RAD are
large and cannot be ignored: in [19] they can be seen as a part of the non-perturbative model,
at the price of introducing an undesired correlation between fNP and D. In order to adjust the
null-evolution curve with a non-perturbative RAD one has to solve eq. (2.70) including the RAD
in the full generality. Such solution can be found in principle, but its numerical implementation is
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(see also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are
even-functions of b that turn to unity for b ! 0. We use the following parameterizations

fNP (x, b) = exp

 
��1(1� x) + �2x+ x(1� x)�5p

1 + �3x�4b2
b2
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, (2.84)

DNP (x, b) = exp
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, (2.85)

and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description
of the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more
parameters in [18]). In both cases the function has exponential or Gaussian form depending on
the relative size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space
�1,2,3 > 0, ⌘1,2,3 > 0, �5 & �2(�1 + �2), due to demand that TMD distribution is null b ! 1.

The ansatz for the non-perturbative part of the RAD has different form, because one expects
a different behavior at large-b. We use the following expression suggested in [20],

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.86)

where

b⇤(b) =
bp

1 + b2/B2
NP

. (2.87)

The function Dresum is the resummed perturbative expansion of RAD [11, 49] reported in the
appendix B. At LO it reads

DLO
resum = � �0

2�0
ln (1� �0as(µ)Lµ) . (2.88)

The higher order expressions (up to N3LO) are given in eq. (B.5). The parameters c0 and BNP

are free positive parameters, in principle totally uncorrelated from the rest of non-perturbative
parameters.

The resummed expression for RAD explicitly has the singularity in b (see e.g. eq. (2.88)). The
singularity designates the convergence radius of the perturbative expression. Consequently, the
perturbative behavior must be turned off well before b approaches the singularity. In the ansatz in
eq. (2.86), this is achieved freezing the perturbative part at b ⇠ BNP. The singularity is located
at �0as(µ)Lµ = 1 and thus, the value of BNP is restricted from above by: BNP . 2e��E⇤�1

QCD ⇡
4GeV�1.

At large-b the non-perturbative expression for RAD in eq. (2.86) is asymptotically linear in b,
D ⇠ c0BNPb. Such a behavior is different from the typical quadratic form. The linear behavior is
suggested by model calculations of the RAD [54, 55], and the coefficient c0 can be related to the
QCD string tension.

The special null-evolution line can be incorporated both at perturbative and non-perturbative
level. In [19] and [20] the special null-evolution line included only its perturbative part for simplicity.
This part is the most important one because it guarantees the cancellation of double-logarithms
in the matching coefficient. However, at large-b, the non-perturbative corrections to the RAD are
large and cannot be ignored: in [19] they can be seen as a part of the non-perturbative model,
at the price of introducing an undesired correlation between fNP and D. In order to adjust the
null-evolution curve with a non-perturbative RAD one has to solve eq. (2.70) including the RAD
in the full generality. Such solution can be found in principle, but its numerical implementation is
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Figure 23. (left) Comparison of NNLO RAD extracted in DY fit (NNPDF31), and global fit of DY
and SIDIS (NNPDF31& DSS). Shaded area shows the 1�-uncertainty band. The dashed lines show the
extraction made in refs.[18] and [19] at LO and NNLO of RAD correspondingly. (right) Distribution of
replica points in different fits of RAD. Dashed lines show the mean values of RAD extracted in the global
fit of DY and SIDIS.

Figure 24. Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band

plays a crucial role. In this work, we have shown that the TMD distributions and RAD are indeed
universal functions.

In order to confirm the universality statement, we have firstly extracted the RAD (D) and the
unpolarized TMDPDF (f1) from the DY data, and secondly we have used them to describe the
SIDIS data (extracting in addition the unpolarized TMDFF, D1). To our best knowledge, this is
the first clear-cut demonstration of the universality of the TMD non-perturbative components. This
demonstration is the main result of this work. The subsidiary results are the values of extracted
unpolarized TMD distributions and RAD, that could be used to predict and describe the low-qT
spectrum of current (LHC, COMPASS, RHIC) and future (EIC, LHeC) experiments.

The sets of data included in this analysis contain in total 1039 points (almost equally dis-
tributed between SIDIS, 582 points, and DY, 457 points). We have the data from fixed target DY
measurements, Tevatron, RHIC, LHC, COMPASS, and HERMES. Unfortunately, only low-energy
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(see also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are
even-functions of b that turn to unity for b ! 0. We use the following parameterizations

fNP (x, b) = exp

 
��1(1� x) + �2x+ x(1� x)�5p

1 + �3x�4b2
b2
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, (2.84)

DNP (x, b) = exp
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and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description
of the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more
parameters in [18]). In both cases the function has exponential or Gaussian form depending on
the relative size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space
�1,2,3 > 0, ⌘1,2,3 > 0, �5 & �2(�1 + �2), due to demand that TMD distribution is null b ! 1.

The ansatz for the non-perturbative part of the RAD has different form, because one expects
a different behavior at large-b. We use the following expression suggested in [20],

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.86)

where

b⇤(b) =
bp

1 + b2/B2
NP

. (2.87)

The function Dresum is the resummed perturbative expansion of RAD [11, 49] reported in the
appendix B. At LO it reads

DLO
resum = � �0

2�0
ln (1� �0as(µ)Lµ) . (2.88)

The higher order expressions (up to N3LO) are given in eq. (B.5). The parameters c0 and BNP

are free positive parameters, in principle totally uncorrelated from the rest of non-perturbative
parameters.

The resummed expression for RAD explicitly has the singularity in b (see e.g. eq. (2.88)). The
singularity designates the convergence radius of the perturbative expression. Consequently, the
perturbative behavior must be turned off well before b approaches the singularity. In the ansatz in
eq. (2.86), this is achieved freezing the perturbative part at b ⇠ BNP. The singularity is located
at �0as(µ)Lµ = 1 and thus, the value of BNP is restricted from above by: BNP . 2e��E⇤�1

QCD ⇡
4GeV�1.

At large-b the non-perturbative expression for RAD in eq. (2.86) is asymptotically linear in b,
D ⇠ c0BNPb. Such a behavior is different from the typical quadratic form. The linear behavior is
suggested by model calculations of the RAD [54, 55], and the coefficient c0 can be related to the
QCD string tension.

The special null-evolution line can be incorporated both at perturbative and non-perturbative
level. In [19] and [20] the special null-evolution line included only its perturbative part for simplicity.
This part is the most important one because it guarantees the cancellation of double-logarithms
in the matching coefficient. However, at large-b, the non-perturbative corrections to the RAD are
large and cannot be ignored: in [19] they can be seen as a part of the non-perturbative model,
at the price of introducing an undesired correlation between fNP and D. In order to adjust the
null-evolution curve with a non-perturbative RAD one has to solve eq. (2.70) including the RAD
in the full generality. Such solution can be found in principle, but its numerical implementation is
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(see also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are
even-functions of b that turn to unity for b ! 0. We use the following parameterizations

fNP (x, b) = exp
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and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description
of the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more
parameters in [18]). In both cases the function has exponential or Gaussian form depending on
the relative size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space
�1,2,3 > 0, ⌘1,2,3 > 0, �5 & �2(�1 + �2), due to demand that TMD distribution is null b ! 1.

The ansatz for the non-perturbative part of the RAD has different form, because one expects
a different behavior at large-b. We use the following expression suggested in [20],

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.86)

where

b⇤(b) =
bp

1 + b2/B2
NP

. (2.87)

The function Dresum is the resummed perturbative expansion of RAD [11, 49] reported in the
appendix B. At LO it reads

DLO
resum = � �0

2�0
ln (1� �0as(µ)Lµ) . (2.88)

The higher order expressions (up to N3LO) are given in eq. (B.5). The parameters c0 and BNP

are free positive parameters, in principle totally uncorrelated from the rest of non-perturbative
parameters.

The resummed expression for RAD explicitly has the singularity in b (see e.g. eq. (2.88)). The
singularity designates the convergence radius of the perturbative expression. Consequently, the
perturbative behavior must be turned off well before b approaches the singularity. In the ansatz in
eq. (2.86), this is achieved freezing the perturbative part at b ⇠ BNP. The singularity is located
at �0as(µ)Lµ = 1 and thus, the value of BNP is restricted from above by: BNP . 2e��E⇤�1

QCD ⇡
4GeV�1.

At large-b the non-perturbative expression for RAD in eq. (2.86) is asymptotically linear in b,
D ⇠ c0BNPb. Such a behavior is different from the typical quadratic form. The linear behavior is
suggested by model calculations of the RAD [54, 55], and the coefficient c0 can be related to the
QCD string tension.

The special null-evolution line can be incorporated both at perturbative and non-perturbative
level. In [19] and [20] the special null-evolution line included only its perturbative part for simplicity.
This part is the most important one because it guarantees the cancellation of double-logarithms
in the matching coefficient. However, at large-b, the non-perturbative corrections to the RAD are
large and cannot be ignored: in [19] they can be seen as a part of the non-perturbative model,
at the price of introducing an undesired correlation between fNP and D. In order to adjust the
null-evolution curve with a non-perturbative RAD one has to solve eq. (2.70) including the RAD
in the full generality. Such solution can be found in principle, but its numerical implementation is
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(see also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are
even-functions of b that turn to unity for b ! 0. We use the following parameterizations

fNP (x, b) = exp
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and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description
of the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more
parameters in [18]). In both cases the function has exponential or Gaussian form depending on
the relative size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space
�1,2,3 > 0, ⌘1,2,3 > 0, �5 & �2(�1 + �2), due to demand that TMD distribution is null b ! 1.

The ansatz for the non-perturbative part of the RAD has different form, because one expects
a different behavior at large-b. We use the following expression suggested in [20],

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.86)

where

b⇤(b) =
bp

1 + b2/B2
NP

. (2.87)

The function Dresum is the resummed perturbative expansion of RAD [11, 49] reported in the
appendix B. At LO it reads

DLO
resum = � �0

2�0
ln (1� �0as(µ)Lµ) . (2.88)

The higher order expressions (up to N3LO) are given in eq. (B.5). The parameters c0 and BNP

are free positive parameters, in principle totally uncorrelated from the rest of non-perturbative
parameters.

The resummed expression for RAD explicitly has the singularity in b (see e.g. eq. (2.88)). The
singularity designates the convergence radius of the perturbative expression. Consequently, the
perturbative behavior must be turned off well before b approaches the singularity. In the ansatz in
eq. (2.86), this is achieved freezing the perturbative part at b ⇠ BNP. The singularity is located
at �0as(µ)Lµ = 1 and thus, the value of BNP is restricted from above by: BNP . 2e��E⇤�1

QCD ⇡
4GeV�1.

At large-b the non-perturbative expression for RAD in eq. (2.86) is asymptotically linear in b,
D ⇠ c0BNPb. Such a behavior is different from the typical quadratic form. The linear behavior is
suggested by model calculations of the RAD [54, 55], and the coefficient c0 can be related to the
QCD string tension.

The special null-evolution line can be incorporated both at perturbative and non-perturbative
level. In [19] and [20] the special null-evolution line included only its perturbative part for simplicity.
This part is the most important one because it guarantees the cancellation of double-logarithms
in the matching coefficient. However, at large-b, the non-perturbative corrections to the RAD are
large and cannot be ignored: in [19] they can be seen as a part of the non-perturbative model,
at the price of introducing an undesired correlation between fNP and D. In order to adjust the
null-evolution curve with a non-perturbative RAD one has to solve eq. (2.70) including the RAD
in the full generality. Such solution can be found in principle, but its numerical implementation is
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Figure 23. (left) Comparison of NNLO RAD extracted in DY fit (NNPDF31), and global fit of DY
and SIDIS (NNPDF31& DSS). Shaded area shows the 1�-uncertainty band. The dashed lines show the
extraction made in refs.[18] and [19] at LO and NNLO of RAD correspondingly. (right) Distribution of
replica points in different fits of RAD. Dashed lines show the mean values of RAD extracted in the global
fit of DY and SIDIS.

Figure 24. Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band

plays a crucial role. In this work, we have shown that the TMD distributions and RAD are indeed
universal functions.

In order to confirm the universality statement, we have firstly extracted the RAD (D) and the
unpolarized TMDPDF (f1) from the DY data, and secondly we have used them to describe the
SIDIS data (extracting in addition the unpolarized TMDFF, D1). To our best knowledge, this is
the first clear-cut demonstration of the universality of the TMD non-perturbative components. This
demonstration is the main result of this work. The subsidiary results are the values of extracted
unpolarized TMD distributions and RAD, that could be used to predict and describe the low-qT
spectrum of current (LHC, COMPASS, RHIC) and future (EIC, LHeC) experiments.

The sets of data included in this analysis contain in total 1039 points (almost equally dis-
tributed between SIDIS, 582 points, and DY, 457 points). We have the data from fixed target DY
measurements, Tevatron, RHIC, LHC, COMPASS, and HERMES. Unfortunately, only low-energy
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(see also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are
even-functions of b that turn to unity for b ! 0. We use the following parameterizations

fNP (x, b) = exp
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and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description
of the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more
parameters in [18]). In both cases the function has exponential or Gaussian form depending on
the relative size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space
�1,2,3 > 0, ⌘1,2,3 > 0, �5 & �2(�1 + �2), due to demand that TMD distribution is null b ! 1.

The ansatz for the non-perturbative part of the RAD has different form, because one expects
a different behavior at large-b. We use the following expression suggested in [20],

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.86)

where

b⇤(b) =
bp

1 + b2/B2
NP

. (2.87)

The function Dresum is the resummed perturbative expansion of RAD [11, 49] reported in the
appendix B. At LO it reads

DLO
resum = � �0

2�0
ln (1� �0as(µ)Lµ) . (2.88)

The higher order expressions (up to N3LO) are given in eq. (B.5). The parameters c0 and BNP

are free positive parameters, in principle totally uncorrelated from the rest of non-perturbative
parameters.

The resummed expression for RAD explicitly has the singularity in b (see e.g. eq. (2.88)). The
singularity designates the convergence radius of the perturbative expression. Consequently, the
perturbative behavior must be turned off well before b approaches the singularity. In the ansatz in
eq. (2.86), this is achieved freezing the perturbative part at b ⇠ BNP. The singularity is located
at �0as(µ)Lµ = 1 and thus, the value of BNP is restricted from above by: BNP . 2e��E⇤�1

QCD ⇡
4GeV�1.

At large-b the non-perturbative expression for RAD in eq. (2.86) is asymptotically linear in b,
D ⇠ c0BNPb. Such a behavior is different from the typical quadratic form. The linear behavior is
suggested by model calculations of the RAD [54, 55], and the coefficient c0 can be related to the
QCD string tension.

The special null-evolution line can be incorporated both at perturbative and non-perturbative
level. In [19] and [20] the special null-evolution line included only its perturbative part for simplicity.
This part is the most important one because it guarantees the cancellation of double-logarithms
in the matching coefficient. However, at large-b, the non-perturbative corrections to the RAD are
large and cannot be ignored: in [19] they can be seen as a part of the non-perturbative model,
at the price of introducing an undesired correlation between fNP and D. In order to adjust the
null-evolution curve with a non-perturbative RAD one has to solve eq. (2.70) including the RAD
in the full generality. Such solution can be found in principle, but its numerical implementation is
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GENERAL CONSIDERATIONS

➤ Not easy to perform direct comparison due to different 
formalisms employed

➤ In all extractions, simple Gaussians are not sufficient

➤ Nontrivial x-dependence is required

➤ No flavor dependence is needed for the moment (note however 
that some flavor dependence is already generated by the 
collinear PDFs)
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AVAILABLE TOOLS: NANGA PARBAT
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https://github.com/vbertone/NangaParbat



AVAILABLE TOOLS: ARTEMIDE
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https://teorica.fis.ucm.es/artemide/



TMDLIB AND TMDPLOTTER
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https://tmdlib.hepforge.org/

Soon more TMD parametrisation will be available



TOOLS USED FOR DRELL-YAN PREDICTIONS
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Codes taking part

14

SCETlib 

CuTe 

DYRes/DYTURBO 

ReSolve 

RadISH 

PB-TMD 

NangaParbat 

arTeMiDe

SCET

qT-res.

PB

TMD

}
}
}
}

[https://confluence.desy.de/display/scetlib]

[https://cute.hepforge.org]

[https://gitlab.cern.ch/DYdevel/DYTURBO]

[https://github.com/vbertone/NangaParbat]

[https://teorica.fis.ucm.es/artemide/]

[https://github.com/fkhorad/reSolve]

[https://arxiv.org/pdf/1705.09127.pdf]

[https://arxiv.org/pdf/1906.00919.pdf]

V. Bertone’s talk at LHC EW WG General Meeting, Dec 2019 
https://indico.cern.ch/event/849342/



TOOLS USED FOR DRELL-YAN PREDICTIONS

38

There is an entire industry 
of tools that make 
predictions for observables 
related to TMDs.  
Most of them neglect 
SIDIS and the important 
effects coming from 
nonperturbative TMD 
components.
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TRANSVERSE MOMENTUM IN FRAGMENTATION FUNCTIONS

40
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FIG. 1. Illustration of transverse-momentum-dependent sin-
gle hadron fragmentation where the final-state hadron is de-
picted as a red arrow, the incoming leptons as blue arrows,
and the event plane – spanned by leptons (blue lines) and
initial quarks/thrust axis n (purple line) – is depicted as a
light blue plane. The transverse momentum kT is calculated
relative to the thrust axis and depicted by the red, dashed
line.

on 8 GeV) collider [32, 33] operating at the ⌥(4S) res-
onance (denoted as on-resonance), as well as a smaller
data set taken 60 MeV below for comparison (denoted as
continuum).

The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber, an array of aerogel
threshold Cherenkov counters, a barrel-like arrangement
of time-of-flight scintillation counters, and an electromag-
netic calorimeter comprised of CsI(Tl) crystals located
inside a superconducting solenoid coil that provides a
1.5 T magnetic field. An iron flux-return located outside
of the coil is instrumented to detect K0

L mesons and to
identify muons. The detector is described in detail else-
where [34, 35]. A 1.5 cm beampipe with 1 mm thickness
and a 4-layer SVD and a small-cell inner drift chamber
were used to record 558 fb�1 [36].

The primary light (uds)- and charm-quark simulations
used in this analysis were generated using pythia6.2
[37], embedded into the EvtGen [38] framework, followed
by a geant3 [39] simulation of the detector response.
The various MC samples were produced separately for
light (uds) and charm quarks, and on the generator level
several JETSET[40] settings were produced in order to
study their impact. For generator level MC to data
comparisons, long-lived weak decays, which normally are
handled in geant, were allowed in EvtGen. In addition,
we generated charged and neutral B meson pairs from
⌥(4S) decays in EvtGen, ⌧ pair events with the KKMC
[41, 42] generator and the Tauola [43] decay package,
and other events with either pythia or dedicated gener-
ators [44] such as for two-photon processes.

A. Event and track selection

Events with at least three reconstructed charged tracks
are required to have a visible energy of all detected
charged tracks and neutral clusters above 7 GeV (to re-
move ⌧ pair events) and either a heavy-jet mass (the
greater of the invariant masses of all particles in a hemi-
sphere as generated by the plane perpendicular to the
thrust axis) above 1.8 GeV/c2 or a ratio of the heavy-
jet mass to visible energy above 0.25. The thrust axis
is required to point into the barrel part of the detec-
tor by having a z component |n̂z| < 0.75 in order to
reduce the amount of thrust-axis smearing due to unde-
tected particles in the forward/backward regions. Tracks
are required to be within 4 cm (2 cm) of the interac-
tion point along (perpendicular to) the positron beam
axis. Each track is required to have at least three
SVD hits and full particle-identification (PID) informa-
tion, and fall within the polar-angular acceptance of
�0.511 < cos ✓lab < 0.842. The fractional energy of each
track is required to exceed 0.1 and the transverse momen-
tum with respect to the thrust axis is then calculated in
the CMS as illustrated in Fig. 1. Also a minimum trans-
verse momentum in the laboratory frame with respect to
the beam axis of 100 MeV/c is imposed to ensure the
particles traverse the magnetic field.

B. PID selection

To apply the PID correction according to the PID e�-
ciency matrices used in previous results [45], the same se-
lection criteria are applied first to define a charged track
as a pion, kaon, proton, electron or muon. This informa-
tion is determined from normalized likelihood ratios that
are constructed from various detector responses. If the
muon-hadron likelihood ratio is above 0.9, the track is
identified as a muon. Otherwise, if the electron-hadron
likelihood ratio is above 0.85, the track is identified as an
electron. If neither of these applies, the track is identified
as a kaon by a kaon-pion likelihood ratio above 0.6 and a
kaon-proton likelihood ratio above 0.2. Pions are identi-
fied with the kaon-pion likelihood ratio below 0.6 and a
pion-proton ratio above 0.2. Finally, protons are identi-
fied with kaon-proton and pion-proton ratios below 0.2.
While neither muons nor electrons are considered explic-
itly for the single hadron analysis, they are retained as
necessary contributors for the PID correction, wherein a
certain fraction enters the pion, kaon, and proton sam-
ples under study.

II. HADRON ANALYSIS AND CORRECTIONS

In the following sections, the hadron yields are ex-
tracted and, successively, the various corrections are ap-
plied and the corresponding systematic uncertainties are
determined to arrive at the single hadron di↵erential
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FIG. 9. Single charged pion cross sections as a function of k2
T for selected bins of fractional energy z and thrust 0.85 < T < 0.9.

The full lines at lower transverse momenta correspond to the Gaussian fits to this data using the same color coding as for the
data. Each datapoint is displayed at the bin’s central value while horizontal uncertainties display the RMS value. The error
boxes represent the systematic uncertainties.

to understand the intrinsic transverse momentum depen-
dence generated in the fragmentation process. Such in-
put is needed to obtain a better theoretical description of
the various transverse-momentum-dependent and related
higher-twist e↵ects visible in transverse spin asymmetries
in semi-inclusive deep inelastic scattering, proton-proton
collisions and electron-positron annihilation. This infor-
mation also leads the way toward high-precision mea-
surements of TMD e↵ects at the electron-ion collider. In
addition, these results provide the unpolarized baseline
for any polarized, transverse-momentum-dependent frag-
mentation functions such as the Collins FF.
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on 8 GeV) collider [32, 33] operating at the ⌥(4S) res-
onance (denoted as on-resonance), as well as a smaller
data set taken 60 MeV below for comparison (denoted as
continuum).

The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber, an array of aerogel
threshold Cherenkov counters, a barrel-like arrangement
of time-of-flight scintillation counters, and an electromag-
netic calorimeter comprised of CsI(Tl) crystals located
inside a superconducting solenoid coil that provides a
1.5 T magnetic field. An iron flux-return located outside
of the coil is instrumented to detect K0
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identify muons. The detector is described in detail else-
where [34, 35]. A 1.5 cm beampipe with 1 mm thickness
and a 4-layer SVD and a small-cell inner drift chamber
were used to record 558 fb�1 [36].
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handled in geant, were allowed in EvtGen. In addition,
we generated charged and neutral B meson pairs from
⌥(4S) decays in EvtGen, ⌧ pair events with the KKMC
[41, 42] generator and the Tauola [43] decay package,
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to understand the intrinsic transverse momentum depen-
dence generated in the fragmentation process. Such in-
put is needed to obtain a better theoretical description of
the various transverse-momentum-dependent and related
higher-twist e↵ects visible in transverse spin asymmetries
in semi-inclusive deep inelastic scattering, proton-proton
collisions and electron-positron annihilation. This infor-
mation also leads the way toward high-precision mea-
surements of TMD e↵ects at the electron-ion collider. In
addition, these results provide the unpolarized baseline
for any polarized, transverse-momentum-dependent frag-
mentation functions such as the Collins FF.
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Table 13 Results of the mW+ − mW− measurements in the electron
and muon decay channels, and of the combination. The table shows
the statistical uncertainties; the experimental uncertainties, divided into
muon-, electron-, recoil- and background-uncertainties; and the mod-

elling uncertainties, separately for QCD modelling including scale vari-
ations, parton shower and angular coefficients, electroweak corrections,
and PDFs. All uncertainties are given in MeV

Channel mW+ − mW−
[MeV]

Stat. Unc. Muon Unc. Elec. Unc. Recoil Unc. Bckg. Unc. QCD Unc. EW Unc. PDF Unc. Total Unc.

W → eν −29.7 17.5 0.0 4.9 0.9 5.4 0.5 0.0 24.1 30.7

W → µν −28.6 16.3 11.7 0.0 1.1 5.0 0.4 0.0 26.0 33.2

Combined −29.2 12.8 3.3 4.1 1.0 4.5 0.4 0.0 23.9 28.0

 [MeV]Wm
80250 80300 80350 80400 80450 80500

ALEPH

DELPHI

L3

OPAL

CDF

D0

+ATLAS W

−ATLAS W

±ATLAS W

ATLAS

Measurement
Stat. Uncertainty
Full Uncertainty

Fig. 28 The measured value of mW is compared to other published
results, including measurements from the LEP experiments ALEPH,
DELPHI, L3 and OPAL [25–28], and from the Tevatron collider exper-
iments CDF and D0 [22,23]. The vertical bands show the statistical
and total uncertainties of the ATLAS measurement, and the horizontal
bands and lines show the statistical and total uncertainties of the other
published results. Measured values of mW for positively and negatively
charged W bosons are also shown

In this process, uncertainties that are anti-correlated
betweenW+ andW− and largely cancel for themW measure-
ment become dominant when measuringmW+−mW− . On the
physics-modelling side, the fixed-order PDF uncertainty and
the parton shower PDF uncertainty give the largest contribu-
tions, while other sources of uncertainty only weakly depend
on charge and tend to cancel. Among the sources of uncer-
tainty related to lepton calibration, the track sagitta correc-
tion dominates in the muon channel, whereas several residual
uncertainties contribute in the electron channel. Most lep-
ton and recoil calibration uncertainties tend to cancel. Back-
ground systematic uncertainties contribute as the Z and mul-
tijet background fractions differ in the W+ and W− channels.
The dominant statistical uncertainties arise from the size of
the data and Monte Carlo signal samples, and of the control
samples used to derive the multijet background.

The mW+ − mW− measurement results are shown in
Table 13 for the electron and muon decay channels, and for
the combination. The electron channel measurement com-
bines six categories (p"

T and mT fits in three |η"| bins), while

 [MeV]Wm
80320 80340 80360 80380 80400 80420

LEP Comb. 33 MeV±80376

Tevatron Comb. 16 MeV±80387

LEP+Tevatron 15 MeV±80385

ATLAS 19 MeV±80370

Electroweak Fit 8 MeV±80356

Wm
Stat. Uncertainty
Full Uncertainty

ATLAS

Fig. 29 The present measurement of mW is compared to the SM pre-
diction from the global electroweak fit [16] updated using recent mea-
surements of the top-quark and Higgs-boson masses, mt = 172.84 ±
0.70 GeV [122] and mH = 125.09 ± 0.24 GeV [123], and to the com-
bined values of mW measured at LEP [124] and at the Tevatron col-
lider [24]

the muon channel has four |η"| bins and eight categories in
total. The fully combined result is

mW+ − mW− = −29.2 ± 12.8(stat.)

± 7.0(exp. syst.)

± 23.9(mod. syst.) MeV

= −29.2 ± 28.0 MeV,

where the first uncertainty is statistical, the second corre-
sponds to the experimental systematic uncertainty, and the
third to the physics-modelling systematic uncertainty.

12 Discussion and conclusions

This paper reports a measurement of the W -boson mass with
the ATLAS detector, obtained through template fits to the
kinematic properties of decay leptons in the electron and
muon decay channels. The measurement is based on proton–
proton collision data recorded in 2011 at a centre-of-mass
energy of

√
s = 7 TeV at the LHC, and corresponding to an

integrated luminosity of 4.6 fb−1. The measurement relies
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Table 13 Results of the mW+ − mW− measurements in the electron
and muon decay channels, and of the combination. The table shows
the statistical uncertainties; the experimental uncertainties, divided into
muon-, electron-, recoil- and background-uncertainties; and the mod-

elling uncertainties, separately for QCD modelling including scale vari-
ations, parton shower and angular coefficients, electroweak corrections,
and PDFs. All uncertainties are given in MeV
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Fig. 28 The measured value of mW is compared to other published
results, including measurements from the LEP experiments ALEPH,
DELPHI, L3 and OPAL [25–28], and from the Tevatron collider exper-
iments CDF and D0 [22,23]. The vertical bands show the statistical
and total uncertainties of the ATLAS measurement, and the horizontal
bands and lines show the statistical and total uncertainties of the other
published results. Measured values of mW for positively and negatively
charged W bosons are also shown
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ment become dominant when measuringmW+−mW− . On the
physics-modelling side, the fixed-order PDF uncertainty and
the parton shower PDF uncertainty give the largest contribu-
tions, while other sources of uncertainty only weakly depend
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tion dominates in the muon channel, whereas several residual
uncertainties contribute in the electron channel. Most lep-
ton and recoil calibration uncertainties tend to cancel. Back-
ground systematic uncertainties contribute as the Z and mul-
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The dominant statistical uncertainties arise from the size of
the data and Monte Carlo signal samples, and of the control
samples used to derive the multijet background.
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TMDs are not flavor 
dependent.  
What happens if they are?

https://arxiv.org/abs/1701.07240


IMPACT ON W MASS DETERMINATION

43

Bacchetta, Bozzi, Radici, Ritzmann, Signori, arXiv:1807.02101

Try some judicious choices of flavour dependent widths and check

http://arxiv.org/abs/arXiv:1807.02101


IMPACT ON W MASS DETERMINATION

43

3

for quarks and gluons), and ga is the genuine flavor-
dependent contribution. Information on gevo can be de-
duced from Ref. [13], where the TMD PDF was extracted
from the global fit of SIDIS, Drell-Yan and Z-production
data (gevo corresponds to g2/4 in Ref. [13]). At Q = MW

and Q0 = 1 GeV, we have gevo ln(Q2/Q2
0) ⇡ 0.3 GeV2.

In order to account for the uncertainties a↵ecting the de-
termination of gevo, we choose to consider the interval
[0.2, 0.6] GeV2 as a reasonable range and we vary ga in
Eq. (2) such that the gaNP values fall into this range.

Thus, we generate random widths in the allowed
range for the considered five flavors. We build 50 sets
of flavor-dependent parameters together with a flavor-
independent set where all the parameters are put equal
to the central value of the variation range, gaNP = 0.4
GeV2. Our analysis is performed by first selecting
“Z-equivalent” sets, and then making a template fit, as
detailed here below.

Selection of “Z-equivalent” sets. For proton-proton
collisions at

p
s = 7 TeV, we generate pseudodata for

the qT distribution of the Z boson (22 bins similar to
the ATLAS ones [23]) using the flavor-independent set in
the DYqT code at O(↵s) and NLL accuracy. We do the
same for proton-antiproton collisions at

p
s = 1.96 TeV

(72 bins similar to the CDF ones [22]). We assign to each
of the qT bins an uncertainty equal to the experimental
one. We compute the qT distribution in the same con-
ditions also for each of the 50 flavor-dependent sets. We
calculate the �2 between each of these 50 distributions
and the pseudodata generated by the flavor-independent
set. We retain only those flavor-dependent sets that
have a �2 < 80 on the “CDF-like” bins (�2/d.o.f. < 1.1)
and a �2 < 44 on the “ATLAS-like” bins (�2/d.o.f. < 2).
The first criterion selects 48 flavor-dependent sets out
of 50; only 30 sets out of 50 match the second one,
because the ATLAS data have smaller (experimental)
uncertainties. We keep those flavor-dependent sets that
fullfil both criteria. When considering all the bins, these
sets have a total �2 < 124 on the pseudodata (�2/d.o.f.
< 1.3). In practice, these selected flavor-dependent sets
are equivalent to the flavor-independent one (with which
the Z pseudodata are generated) at approximately
2� level. Not surprisingly, this result implies that
the Z boson data alone are not able to discriminate
between flavor-independent and flavor-dependent sets of
nonperturbative parameters. Data from flavor-sensitive
processes are needed, in particular from SIDIS [39–42].

Template fit. Following the scheme introduced
in [26, 43], we perform a template fit to estimate the
impact of our “Z-equivalent” flavor-dependent sets on
the determination of MW . We use the DYRes code at the
same accuracy (NLL at small transverse momentum and
O(↵s) at large transverse momentum) and kinematics as
before, using the MSTW2008 NLO PDF set [44], setting

central values for the renormalization, factorization and
resummation scales µR = µF = µres = MW , and
implementing ATLAS acceptance cuts on the final-state
leptons [23]. In DYRes, the singularity of the resummed
form factor at very large values of bT (bT & 1/⇤QCD) is
avoided by the usual b⇤ prescription [2]. Similarly, the
correct behavior at very low bT is enforced by modifying
the argument of the logarithmic terms as in Refs. [36, 38].
The form factor in Eq. (2) is usually interpreted as the
nonperturbative contribution to TMD resummation for
bT & 1/⇤QCD. We generate templates with very high
statistics (750 M events) for the mT , pT ` distributions1

with di↵erent MW masses in the range 80.370 GeV
 MW  80.400 GeV, using the flavor-independent set
for the nonperturbative parameters. Then, for each “Z-
equivalent” flavor-dependent set we generate pseudodata
with lower statistics (75 M events) for the same leptonic
observables with the fixed value MW = 80.385 GeV 2.
Finally, for each pseudodata set we compute the �2 of
the various templates and we identify the template with
minimum �2 in order to establish how large is the shift in
MW induced by a particular choice of flavor-dependent
nonperturbative parameters. The statistical uncertainty
of the template-fit procedure has been estimated by con-
sidering statistically equivalent those templates for which
��2 = (�2

� �2
min)  1. Consequently, we quote an

uncertainty of 4 MeV for each of the obtained MW shifts.

Impact on the MW determination.

The outcome of our template fit is summarized in
Tabs. I and II for 5 representative sets out of the 30
“Z-equivalent” sets. The former table lists the values of
the gaNP parameter in Eq. (2) for each of the 5 considered
flavors a = uv, dv, us, ds, s = c = b = g. The latter table
shows the corresponding shifts induced in MW when ap-
plying our analysis to the mT , pT ` distributions for the
W+ and the W� production at the LHC (

p
s = 7 TeV).

Set uv dv us ds s
1 0.34 0.26 0.46 0.59 0.32
2 0.34 0.46 0.56 0.32 0.51
3 0.55 0.34 0.33 0.55 0.30
4 0.53 0.49 0.37 0.22 0.52
5 0.42 0.38 0.29 0.57 0.27

TABLE I: Values of the gaNP parameter in Eq. (2) for the
flavors a = uv, dv, us, ds, s = c = b = g. Units are GeV2.

1
Our analysis is performed on 30 bins in the interval [60, 90] GeV

for mT and on 20 bins in the interval [30, 50] GeV for pT `.
2
The factor-of-10 reduction in statistics between templates and

pseudodata is justified by a sanity check performed analyzing the

�2
profile of di↵erent samples with the same inputs but di↵erent

statistics [26].

Bacchetta, Bozzi, Radici, Ritzmann, Signori, arXiv:1807.02101

Try some judicious choices of flavour dependent widths and check

http://arxiv.org/abs/arXiv:1807.02101


IMPACT ON W MASS DETERMINATION

43

3

for quarks and gluons), and ga is the genuine flavor-
dependent contribution. Information on gevo can be de-
duced from Ref. [13], where the TMD PDF was extracted
from the global fit of SIDIS, Drell-Yan and Z-production
data (gevo corresponds to g2/4 in Ref. [13]). At Q = MW
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termination of gevo, we choose to consider the interval
[0.2, 0.6] GeV2 as a reasonable range and we vary ga in
Eq. (2) such that the gaNP values fall into this range.

Thus, we generate random widths in the allowed
range for the considered five flavors. We build 50 sets
of flavor-dependent parameters together with a flavor-
independent set where all the parameters are put equal
to the central value of the variation range, gaNP = 0.4
GeV2. Our analysis is performed by first selecting
“Z-equivalent” sets, and then making a template fit, as
detailed here below.

Selection of “Z-equivalent” sets. For proton-proton
collisions at

p
s = 7 TeV, we generate pseudodata for

the qT distribution of the Z boson (22 bins similar to
the ATLAS ones [23]) using the flavor-independent set in
the DYqT code at O(↵s) and NLL accuracy. We do the
same for proton-antiproton collisions at

p
s = 1.96 TeV

(72 bins similar to the CDF ones [22]). We assign to each
of the qT bins an uncertainty equal to the experimental
one. We compute the qT distribution in the same con-
ditions also for each of the 50 flavor-dependent sets. We
calculate the �2 between each of these 50 distributions
and the pseudodata generated by the flavor-independent
set. We retain only those flavor-dependent sets that
have a �2 < 80 on the “CDF-like” bins (�2/d.o.f. < 1.1)
and a �2 < 44 on the “ATLAS-like” bins (�2/d.o.f. < 2).
The first criterion selects 48 flavor-dependent sets out
of 50; only 30 sets out of 50 match the second one,
because the ATLAS data have smaller (experimental)
uncertainties. We keep those flavor-dependent sets that
fullfil both criteria. When considering all the bins, these
sets have a total �2 < 124 on the pseudodata (�2/d.o.f.
< 1.3). In practice, these selected flavor-dependent sets
are equivalent to the flavor-independent one (with which
the Z pseudodata are generated) at approximately
2� level. Not surprisingly, this result implies that
the Z boson data alone are not able to discriminate
between flavor-independent and flavor-dependent sets of
nonperturbative parameters. Data from flavor-sensitive
processes are needed, in particular from SIDIS [39–42].

Template fit. Following the scheme introduced
in [26, 43], we perform a template fit to estimate the
impact of our “Z-equivalent” flavor-dependent sets on
the determination of MW . We use the DYRes code at the
same accuracy (NLL at small transverse momentum and
O(↵s) at large transverse momentum) and kinematics as
before, using the MSTW2008 NLO PDF set [44], setting

central values for the renormalization, factorization and
resummation scales µR = µF = µres = MW , and
implementing ATLAS acceptance cuts on the final-state
leptons [23]. In DYRes, the singularity of the resummed
form factor at very large values of bT (bT & 1/⇤QCD) is
avoided by the usual b⇤ prescription [2]. Similarly, the
correct behavior at very low bT is enforced by modifying
the argument of the logarithmic terms as in Refs. [36, 38].
The form factor in Eq. (2) is usually interpreted as the
nonperturbative contribution to TMD resummation for
bT & 1/⇤QCD. We generate templates with very high
statistics (750 M events) for the mT , pT ` distributions1

with di↵erent MW masses in the range 80.370 GeV
 MW  80.400 GeV, using the flavor-independent set
for the nonperturbative parameters. Then, for each “Z-
equivalent” flavor-dependent set we generate pseudodata
with lower statistics (75 M events) for the same leptonic
observables with the fixed value MW = 80.385 GeV 2.
Finally, for each pseudodata set we compute the �2 of
the various templates and we identify the template with
minimum �2 in order to establish how large is the shift in
MW induced by a particular choice of flavor-dependent
nonperturbative parameters. The statistical uncertainty
of the template-fit procedure has been estimated by con-
sidering statistically equivalent those templates for which
��2 = (�2

� �2
min)  1. Consequently, we quote an

uncertainty of 4 MeV for each of the obtained MW shifts.

Impact on the MW determination.

The outcome of our template fit is summarized in
Tabs. I and II for 5 representative sets out of the 30
“Z-equivalent” sets. The former table lists the values of
the gaNP parameter in Eq. (2) for each of the 5 considered
flavors a = uv, dv, us, ds, s = c = b = g. The latter table
shows the corresponding shifts induced in MW when ap-
plying our analysis to the mT , pT ` distributions for the
W+ and the W� production at the LHC (

p
s = 7 TeV).

Set uv dv us ds s
1 0.34 0.26 0.46 0.59 0.32
2 0.34 0.46 0.56 0.32 0.51
3 0.55 0.34 0.33 0.55 0.30
4 0.53 0.49 0.37 0.22 0.52
5 0.42 0.38 0.29 0.57 0.27

TABLE I: Values of the gaNP parameter in Eq. (2) for the
flavors a = uv, dv, us, ds, s = c = b = g. Units are GeV2.

1
Our analysis is performed on 30 bins in the interval [60, 90] GeV

for mT and on 20 bins in the interval [30, 50] GeV for pT `.
2
The factor-of-10 reduction in statistics between templates and

pseudodata is justified by a sanity check performed analyzing the

�2
profile of di↵erent samples with the same inputs but di↵erent

statistics [26].

narrow, medium, large 
narrow, large, narrow 
large, narrow, large 
large, medium, narrow 
medium, narrow, large
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for quarks and gluons), and ga is the genuine flavor-
dependent contribution. Information on gevo can be de-
duced from Ref. [13], where the TMD PDF was extracted
from the global fit of SIDIS, Drell-Yan and Z-production
data (gevo corresponds to g2/4 in Ref. [13]). At Q = MW

and Q0 = 1 GeV, we have gevo ln(Q2/Q2
0) ⇡ 0.3 GeV2.

In order to account for the uncertainties a↵ecting the de-
termination of gevo, we choose to consider the interval
[0.2, 0.6] GeV2 as a reasonable range and we vary ga in
Eq. (2) such that the gaNP values fall into this range.

Thus, we generate random widths in the allowed
range for the considered five flavors. We build 50 sets
of flavor-dependent parameters together with a flavor-
independent set where all the parameters are put equal
to the central value of the variation range, gaNP = 0.4
GeV2. Our analysis is performed by first selecting
“Z-equivalent” sets, and then making a template fit, as
detailed here below.

Selection of “Z-equivalent” sets. For proton-proton
collisions at

p
s = 7 TeV, we generate pseudodata for

the qT distribution of the Z boson (22 bins similar to
the ATLAS ones [23]) using the flavor-independent set in
the DYqT code at O(↵s) and NLL accuracy. We do the
same for proton-antiproton collisions at

p
s = 1.96 TeV

(72 bins similar to the CDF ones [22]). We assign to each
of the qT bins an uncertainty equal to the experimental
one. We compute the qT distribution in the same con-
ditions also for each of the 50 flavor-dependent sets. We
calculate the �2 between each of these 50 distributions
and the pseudodata generated by the flavor-independent
set. We retain only those flavor-dependent sets that
have a �2 < 80 on the “CDF-like” bins (�2/d.o.f. < 1.1)
and a �2 < 44 on the “ATLAS-like” bins (�2/d.o.f. < 2).
The first criterion selects 48 flavor-dependent sets out
of 50; only 30 sets out of 50 match the second one,
because the ATLAS data have smaller (experimental)
uncertainties. We keep those flavor-dependent sets that
fullfil both criteria. When considering all the bins, these
sets have a total �2 < 124 on the pseudodata (�2/d.o.f.
< 1.3). In practice, these selected flavor-dependent sets
are equivalent to the flavor-independent one (with which
the Z pseudodata are generated) at approximately
2� level. Not surprisingly, this result implies that
the Z boson data alone are not able to discriminate
between flavor-independent and flavor-dependent sets of
nonperturbative parameters. Data from flavor-sensitive
processes are needed, in particular from SIDIS [39–42].

Template fit. Following the scheme introduced
in [26, 43], we perform a template fit to estimate the
impact of our “Z-equivalent” flavor-dependent sets on
the determination of MW . We use the DYRes code at the
same accuracy (NLL at small transverse momentum and
O(↵s) at large transverse momentum) and kinematics as
before, using the MSTW2008 NLO PDF set [44], setting

central values for the renormalization, factorization and
resummation scales µR = µF = µres = MW , and
implementing ATLAS acceptance cuts on the final-state
leptons [23]. In DYRes, the singularity of the resummed
form factor at very large values of bT (bT & 1/⇤QCD) is
avoided by the usual b⇤ prescription [2]. Similarly, the
correct behavior at very low bT is enforced by modifying
the argument of the logarithmic terms as in Refs. [36, 38].
The form factor in Eq. (2) is usually interpreted as the
nonperturbative contribution to TMD resummation for
bT & 1/⇤QCD. We generate templates with very high
statistics (750 M events) for the mT , pT ` distributions1

with di↵erent MW masses in the range 80.370 GeV
 MW  80.400 GeV, using the flavor-independent set
for the nonperturbative parameters. Then, for each “Z-
equivalent” flavor-dependent set we generate pseudodata
with lower statistics (75 M events) for the same leptonic
observables with the fixed value MW = 80.385 GeV 2.
Finally, for each pseudodata set we compute the �2 of
the various templates and we identify the template with
minimum �2 in order to establish how large is the shift in
MW induced by a particular choice of flavor-dependent
nonperturbative parameters. The statistical uncertainty
of the template-fit procedure has been estimated by con-
sidering statistically equivalent those templates for which
��2 = (�2

� �2
min)  1. Consequently, we quote an

uncertainty of 4 MeV for each of the obtained MW shifts.

Impact on the MW determination.

The outcome of our template fit is summarized in
Tabs. I and II for 5 representative sets out of the 30
“Z-equivalent” sets. The former table lists the values of
the gaNP parameter in Eq. (2) for each of the 5 considered
flavors a = uv, dv, us, ds, s = c = b = g. The latter table
shows the corresponding shifts induced in MW when ap-
plying our analysis to the mT , pT ` distributions for the
W+ and the W� production at the LHC (

p
s = 7 TeV).

Set uv dv us ds s
1 0.34 0.26 0.46 0.59 0.32
2 0.34 0.46 0.56 0.32 0.51
3 0.55 0.34 0.33 0.55 0.30
4 0.53 0.49 0.37 0.22 0.52
5 0.42 0.38 0.29 0.57 0.27

TABLE I: Values of the gaNP parameter in Eq. (2) for the
flavors a = uv, dv, us, ds, s = c = b = g. Units are GeV2.

1
Our analysis is performed on 30 bins in the interval [60, 90] GeV

for mT and on 20 bins in the interval [30, 50] GeV for pT `.
2
The factor-of-10 reduction in statistics between templates and

pseudodata is justified by a sanity check performed analyzing the

�2
profile of di↵erent samples with the same inputs but di↵erent

statistics [26].

narrow, medium, large 
narrow, large, narrow 
large, narrow, large 
large, medium, narrow 
medium, narrow, large

• Take the “Z-equivalent” flavour-dependent 
parameter sets and compute low-statistics (135M) 
mT and pTl distributions

➡ these are our pseudodata

• Take the flavour-independent parameter set and 
compute high-statistics (750M) mT and pTl 
distributions for 30 different values of MW

➡  these are our templates

• perform the template fit procedure and 
compute the shifts induced by flavour effects

• transverse mass: zero or few MeV shifts, generally 
favouring lower values for W- (preferred by EW fit)

• lepton pt: quite important shifts (W+ set 3: 9 MeV, 
envelope: up to 15 MeV)

Impact on the determination of MW

NLL+LO QCD analysis obtained through a modified version of the 

DYRes code [Catani, deFlorian, Ferrera, Grazzini (2015)]


(LHC 7 TeV, ATLAS acceptance cuts)


Statistical uncertainty: 2.5 MeV 
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which is flavor independent (but, in principle, di↵erent
for quarks and gluons), and ga is the genuine flavor-
dependent contribution. Information on gevo can be de-
duced from Ref. [13], where the TMD PDF was extracted
from the global fit of SIDIS, Drell-Yan and Z-production
data (gevo corresponds to g2/4 in Ref. [13]). At Q = MW

and Q0 = 1 GeV, we have gevo ln(Q2/Q2
0) ⇡ 0.3 GeV2.

In order to account for the uncertainties a↵ecting the de-
termination of gevo, we choose to consider the interval
[0.2, 0.6] GeV2 as a reasonable range and we vary ga in
Eq. (2) such that the gaNP values fall into this range.

Thus, we generate random widths in the allowed
range for the considered five flavors. We build 50 sets
of flavor-dependent parameters together with a flavor-
independent set where all the parameters are put equal
to the central value of the variation range, gaNP = 0.4
GeV2. Our analysis is performed by first selecting
“Z-equivalent” sets, and then making a template fit, as
detailed here below.

Selection of “Z-equivalent” sets. For proton-proton
collisions at

p
s = 7 TeV, we generate pseudodata for

the qT distribution of the Z boson (22 bins similar to
the ATLAS ones [23]) using the flavor-independent set in
the DYqT code at O(↵s) and NLL accuracy. We do the
same for proton-antiproton collisions at

p
s = 1.96 TeV

(72 bins similar to the CDF ones [22]). We assign to each
of the qT bins an uncertainty equal to the experimental
one. We compute the qT distribution in the same con-
ditions also for each of the 50 flavor-dependent sets. We
calculate the �2 between each of these 50 distributions
and the pseudodata generated by the flavor-independent
set. We retain only those flavor-dependent sets that
have a �2 < 80 on the “CDF-like” bins (�2/d.o.f. < 1.1)
and a �2 < 44 on the “ATLAS-like” bins (�2/d.o.f. < 2).
The first criterion selects 48 flavor-dependent sets out
of 50; only 30 sets out of 50 match the second one,
because the ATLAS data have smaller (experimental)
uncertainties. We keep those flavor-dependent sets that
fullfil both criteria. When considering all the bins, these
sets have a total �2 < 124 on the pseudodata (�2/d.o.f.
< 1.3). In practice, these selected flavor-dependent sets
are equivalent to the flavor-independent one (with which
the Z pseudodata are generated) at approximately
2� level. Not surprisingly, this result implies that
the Z boson data alone are not able to discriminate
between flavor-independent and flavor-dependent sets of
nonperturbative parameters. Data from flavor-sensitive
processes are needed, in particular from SIDIS [40–43].

Template fit. Following the scheme introduced
in [26, 44], we perform a template fit to estimate the
impact of our “Z-equivalent” flavor-dependent sets on
the determination of MW . We use the DYRes code at the
same accuracy (NLL at small transverse momentum and
O(↵s) at large transverse momentum) and kinematics as

before, using the MSTW2008 NLO PDF set [45], setting
central values for the renormalization, factorization and
resummation scales µR = µF = µres = MW , and
implementing ATLAS acceptance cuts on the final-state
leptons [23]. In DYRes, the singularity of the resummed
form factor at very large values of bT (bT & 1/⇤QCD) is
avoided by the usual b⇤ prescription [2]. Similarly, the
correct behavior at very low bT is enforced by modifying
the argument of the logarithmic terms as in Refs. [37, 39].
The form factor in Eq. (2) is usually interpreted as the
nonperturbative contribution to TMD resummation for
bT & 1/⇤QCD. We generate templates with very high
statistics (750 M events) for the mT , pT ` distributions1

with di↵erent MW masses in the range 80.370 GeV
 MW  80.400 GeV, using the flavor-independent
set for the nonperturbative parameters. Then, for
each “Z-equivalent” flavor-dependent set we generate
pseudodata with lower statistics (135 M events) for
the same leptonic observables with the fixed value
MW = 80.385 GeV. Finally, for each pseudodata set we
compute the �2 of the various templates and we identify
the template with minimum �2 in order to establish how
large is the shift in MW induced by a particular choice
of flavor-dependent nonperturbative parameters. The
statistical uncertainty of the template-fit procedure has
been estimated by considering statistically equivalent
those templates for which ��2 = (�2

� �2
min)  1.

Consequently, we quote an uncertainty of 2.5 MeV for
each of the obtained MW shifts.

Impact on the MW determination.

The outcome of our template fit is summarized in
Tabs. I and II for 5 representative sets out of the 30
“Z-equivalent” sets. The former table lists the values of
the gaNP parameter in Eq. (2) for each of the 5 considered
flavors a = uv, dv, us, ds, s = c = b = g. The latter table
shows the corresponding shifts induced in MW when ap-
plying our analysis to the mT , pT ` distributions for the
W+ and the W� production at the LHC (

p
s = 7 TeV).

Set uv dv us ds s
1 0.34 0.26 0.46 0.59 0.32
2 0.34 0.46 0.56 0.32 0.51
3 0.55 0.34 0.33 0.55 0.30
4 0.53 0.49 0.37 0.22 0.52
5 0.42 0.38 0.29 0.57 0.27

TABLE I: Values of the gaNP parameter in Eq. (2) for the
flavors a = uv, dv, us, ds, s = c = b = g. Units are GeV2.

As expected, the shifts induced by the analysis per-

1
Our analysis is performed on 30 bins in the interval [60, 90] GeV

for mT and on 20 bins in the interval [30, 50] GeV for pT `.

4

�MW+ �MW�

Set mT pT ` mT pT `

1 0 -1 -2 3
2 0 -6 -2 0
3 -1 9 -2 -4
4 0 0 -2 -4
5 0 4 -1 -3

TABLE II: Shifts in MW± (in MeV) induced by the cor-
responding sets of flavor-dependent intrinsic transverse mo-
menta outlined in Tab. I (Statistical uncertainty: 2.5 MeV).

formed on pT ` are generally larger than for the mT case,
since the latter is less sensitive to qWT -modelling e↵ects.

For set 3, the shift induced on MW+ by the pT ` analy-
sis is 9 MeV, its size is particularly large if compared to
the corresponding uncertainty quoted by ATLAS (3 MeV).
In general, taking also into account the statistical uncer-
tainty of our analysis, the absolute value of the shifts
induced when considering the pT ` observable could ex-
ceed 10 MeV. For MW� the shifts are less significant and
fall within a 2-� interval around zero.

In the kinematic conditions under consideration, W+

bosons are dominantly produced by a ud̄ partonic pro-
cess, with the u coming from the valence region. As
a consequence, we observe that sets characterized by a
larger value of the combination guv

NP + gds
NP (sets 3 and

5) lead to positive shifts in the value of MW+ , while sets
with a smaller value of guv

NP + gds
NP (set 2) lead to neg-

ative shifts. For W� the situation is less clear, because
the dominant partonic channel is ūd, with similar con-
tributions from the valence and sea components of the
d quark. It seems that sets with smaller values of the
sum of gus

NP + gdv
NP + gus

NP + gds
NP (sets 3, 4, 5) lead to to

negative shifts in the value of MW+ . Set 1 has a large
value of the of the sum of gus

NP + gdv
NP + gus

NP + gds
NP and

leads to a positive shift in MW+ . Set 2, however, violates
the expectations based on these simple arguments.

Di↵erent flavor-dependent sets may induce artificial
asymmetric shifts for MW+ and MW� in the flavor-
independent template fits. For instance, if MW� > MW+

(which corresponds to the ATLAS findings [23]) a template
fit to the pT ` observable based on sets 1 and 2 would
lead to di↵erent shifts �MW� > �MW+ such that
the di↵erence between the two masses is enhanced. In
this case, a fit with the corresponding flavor-dependent
nonperturbative contributions would lead to a reduction
of the mass gap. On the contrary, using sets 3-5 one
would obtain the opposite result.

Outlook and future developments.

In this work, we investigated the uncertainties on the
determination of MW at the LHC induced by a possi-
ble flavor dependence of the partonic intrinsic transverse
momentum. From these outcomes, we point out that a
“flavor-blind” data analysis may not be a su�ciently ac-

curate option, especially when a total uncertainty lower
than 10 MeV is expected for MW at the LHC [46].

Future data from flavor-sensitive processes such as
SIDIS (from the 12 GeV upgrade at Je↵erson Lab [47],
from the COMPASS collaboration [48], and from a future
Electron-Ion Collider with both proton and deuteron
beams [42, 43]) will shed new light on the flavor de-
composition of the unpolarized TMD PDF. These low-
energy SIDIS data involve also the study of the flavor
dependence in the fragmentation function (the unpolar-
ized TMD FF). Therefore, new data from semi-inclusive
e+e� annihilation will also be needed for the flavor de-
composition of the TMD FF [36].

All these data will improve our knowledge of the
partonic structure of hadrons, and may help in reducing
the uncertainties in precision measurements at high
energies.
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for quarks and gluons), and ga is the genuine flavor-
dependent contribution. Information on gevo can be de-
duced from Ref. [13], where the TMD PDF was extracted
from the global fit of SIDIS, Drell-Yan and Z-production
data (gevo corresponds to g2/4 in Ref. [13]). At Q = MW

and Q0 = 1 GeV, we have gevo ln(Q2/Q2
0) ⇡ 0.3 GeV2.

In order to account for the uncertainties a↵ecting the de-
termination of gevo, we choose to consider the interval
[0.2, 0.6] GeV2 as a reasonable range and we vary ga in
Eq. (2) such that the gaNP values fall into this range.

Thus, we generate random widths in the allowed
range for the considered five flavors. We build 50 sets
of flavor-dependent parameters together with a flavor-
independent set where all the parameters are put equal
to the central value of the variation range, gaNP = 0.4
GeV2. Our analysis is performed by first selecting
“Z-equivalent” sets, and then making a template fit, as
detailed here below.

Selection of “Z-equivalent” sets. For proton-proton
collisions at

p
s = 7 TeV, we generate pseudodata for

the qT distribution of the Z boson (22 bins similar to
the ATLAS ones [23]) using the flavor-independent set in
the DYqT code at O(↵s) and NLL accuracy. We do the
same for proton-antiproton collisions at

p
s = 1.96 TeV

(72 bins similar to the CDF ones [22]). We assign to each
of the qT bins an uncertainty equal to the experimental
one. We compute the qT distribution in the same con-
ditions also for each of the 50 flavor-dependent sets. We
calculate the �2 between each of these 50 distributions
and the pseudodata generated by the flavor-independent
set. We retain only those flavor-dependent sets that
have a �2 < 80 on the “CDF-like” bins (�2/d.o.f. < 1.1)
and a �2 < 44 on the “ATLAS-like” bins (�2/d.o.f. < 2).
The first criterion selects 48 flavor-dependent sets out
of 50; only 30 sets out of 50 match the second one,
because the ATLAS data have smaller (experimental)
uncertainties. We keep those flavor-dependent sets that
fullfil both criteria. When considering all the bins, these
sets have a total �2 < 124 on the pseudodata (�2/d.o.f.
< 1.3). In practice, these selected flavor-dependent sets
are equivalent to the flavor-independent one (with which
the Z pseudodata are generated) at approximately
2� level. Not surprisingly, this result implies that
the Z boson data alone are not able to discriminate
between flavor-independent and flavor-dependent sets of
nonperturbative parameters. Data from flavor-sensitive
processes are needed, in particular from SIDIS [39–42].

Template fit. Following the scheme introduced
in [26, 43], we perform a template fit to estimate the
impact of our “Z-equivalent” flavor-dependent sets on
the determination of MW . We use the DYRes code at the
same accuracy (NLL at small transverse momentum and
O(↵s) at large transverse momentum) and kinematics as
before, using the MSTW2008 NLO PDF set [44], setting

central values for the renormalization, factorization and
resummation scales µR = µF = µres = MW , and
implementing ATLAS acceptance cuts on the final-state
leptons [23]. In DYRes, the singularity of the resummed
form factor at very large values of bT (bT & 1/⇤QCD) is
avoided by the usual b⇤ prescription [2]. Similarly, the
correct behavior at very low bT is enforced by modifying
the argument of the logarithmic terms as in Refs. [36, 38].
The form factor in Eq. (2) is usually interpreted as the
nonperturbative contribution to TMD resummation for
bT & 1/⇤QCD. We generate templates with very high
statistics (750 M events) for the mT , pT ` distributions1

with di↵erent MW masses in the range 80.370 GeV
 MW  80.400 GeV, using the flavor-independent set
for the nonperturbative parameters. Then, for each “Z-
equivalent” flavor-dependent set we generate pseudodata
with lower statistics (75 M events) for the same leptonic
observables with the fixed value MW = 80.385 GeV 2.
Finally, for each pseudodata set we compute the �2 of
the various templates and we identify the template with
minimum �2 in order to establish how large is the shift in
MW induced by a particular choice of flavor-dependent
nonperturbative parameters. The statistical uncertainty
of the template-fit procedure has been estimated by con-
sidering statistically equivalent those templates for which
��2 = (�2

� �2
min)  1. Consequently, we quote an

uncertainty of 4 MeV for each of the obtained MW shifts.

Impact on the MW determination.

The outcome of our template fit is summarized in
Tabs. I and II for 5 representative sets out of the 30
“Z-equivalent” sets. The former table lists the values of
the gaNP parameter in Eq. (2) for each of the 5 considered
flavors a = uv, dv, us, ds, s = c = b = g. The latter table
shows the corresponding shifts induced in MW when ap-
plying our analysis to the mT , pT ` distributions for the
W+ and the W� production at the LHC (

p
s = 7 TeV).

Set uv dv us ds s
1 0.34 0.26 0.46 0.59 0.32
2 0.34 0.46 0.56 0.32 0.51
3 0.55 0.34 0.33 0.55 0.30
4 0.53 0.49 0.37 0.22 0.52
5 0.42 0.38 0.29 0.57 0.27

TABLE I: Values of the gaNP parameter in Eq. (2) for the
flavors a = uv, dv, us, ds, s = c = b = g. Units are GeV2.

1
Our analysis is performed on 30 bins in the interval [60, 90] GeV

for mT and on 20 bins in the interval [30, 50] GeV for pT `.
2
The factor-of-10 reduction in statistics between templates and

pseudodata is justified by a sanity check performed analyzing the

�2
profile of di↵erent samples with the same inputs but di↵erent

statistics [26].

narrow, medium, large 
narrow, large, narrow 
large, narrow, large 
large, medium, narrow 
medium, narrow, large

• Take the “Z-equivalent” flavour-dependent 
parameter sets and compute low-statistics (135M) 
mT and pTl distributions

➡ these are our pseudodata

• Take the flavour-independent parameter set and 
compute high-statistics (750M) mT and pTl 
distributions for 30 different values of MW

➡  these are our templates

• perform the template fit procedure and 
compute the shifts induced by flavour effects

• transverse mass: zero or few MeV shifts, generally 
favouring lower values for W- (preferred by EW fit)

• lepton pt: quite important shifts (W+ set 3: 9 MeV, 
envelope: up to 15 MeV)

Impact on the determination of MW

NLL+LO QCD analysis obtained through a modified version of the 

DYRes code [Catani, deFlorian, Ferrera, Grazzini (2015)]


(LHC 7 TeV, ATLAS acceptance cuts)


Statistical uncertainty: 2.5 MeV 
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which is flavor independent (but, in principle, di↵erent
for quarks and gluons), and ga is the genuine flavor-
dependent contribution. Information on gevo can be de-
duced from Ref. [13], where the TMD PDF was extracted
from the global fit of SIDIS, Drell-Yan and Z-production
data (gevo corresponds to g2/4 in Ref. [13]). At Q = MW

and Q0 = 1 GeV, we have gevo ln(Q2/Q2
0) ⇡ 0.3 GeV2.

In order to account for the uncertainties a↵ecting the de-
termination of gevo, we choose to consider the interval
[0.2, 0.6] GeV2 as a reasonable range and we vary ga in
Eq. (2) such that the gaNP values fall into this range.

Thus, we generate random widths in the allowed
range for the considered five flavors. We build 50 sets
of flavor-dependent parameters together with a flavor-
independent set where all the parameters are put equal
to the central value of the variation range, gaNP = 0.4
GeV2. Our analysis is performed by first selecting
“Z-equivalent” sets, and then making a template fit, as
detailed here below.

Selection of “Z-equivalent” sets. For proton-proton
collisions at

p
s = 7 TeV, we generate pseudodata for

the qT distribution of the Z boson (22 bins similar to
the ATLAS ones [23]) using the flavor-independent set in
the DYqT code at O(↵s) and NLL accuracy. We do the
same for proton-antiproton collisions at

p
s = 1.96 TeV

(72 bins similar to the CDF ones [22]). We assign to each
of the qT bins an uncertainty equal to the experimental
one. We compute the qT distribution in the same con-
ditions also for each of the 50 flavor-dependent sets. We
calculate the �2 between each of these 50 distributions
and the pseudodata generated by the flavor-independent
set. We retain only those flavor-dependent sets that
have a �2 < 80 on the “CDF-like” bins (�2/d.o.f. < 1.1)
and a �2 < 44 on the “ATLAS-like” bins (�2/d.o.f. < 2).
The first criterion selects 48 flavor-dependent sets out
of 50; only 30 sets out of 50 match the second one,
because the ATLAS data have smaller (experimental)
uncertainties. We keep those flavor-dependent sets that
fullfil both criteria. When considering all the bins, these
sets have a total �2 < 124 on the pseudodata (�2/d.o.f.
< 1.3). In practice, these selected flavor-dependent sets
are equivalent to the flavor-independent one (with which
the Z pseudodata are generated) at approximately
2� level. Not surprisingly, this result implies that
the Z boson data alone are not able to discriminate
between flavor-independent and flavor-dependent sets of
nonperturbative parameters. Data from flavor-sensitive
processes are needed, in particular from SIDIS [40–43].

Template fit. Following the scheme introduced
in [26, 44], we perform a template fit to estimate the
impact of our “Z-equivalent” flavor-dependent sets on
the determination of MW . We use the DYRes code at the
same accuracy (NLL at small transverse momentum and
O(↵s) at large transverse momentum) and kinematics as

before, using the MSTW2008 NLO PDF set [45], setting
central values for the renormalization, factorization and
resummation scales µR = µF = µres = MW , and
implementing ATLAS acceptance cuts on the final-state
leptons [23]. In DYRes, the singularity of the resummed
form factor at very large values of bT (bT & 1/⇤QCD) is
avoided by the usual b⇤ prescription [2]. Similarly, the
correct behavior at very low bT is enforced by modifying
the argument of the logarithmic terms as in Refs. [37, 39].
The form factor in Eq. (2) is usually interpreted as the
nonperturbative contribution to TMD resummation for
bT & 1/⇤QCD. We generate templates with very high
statistics (750 M events) for the mT , pT ` distributions1

with di↵erent MW masses in the range 80.370 GeV
 MW  80.400 GeV, using the flavor-independent
set for the nonperturbative parameters. Then, for
each “Z-equivalent” flavor-dependent set we generate
pseudodata with lower statistics (135 M events) for
the same leptonic observables with the fixed value
MW = 80.385 GeV. Finally, for each pseudodata set we
compute the �2 of the various templates and we identify
the template with minimum �2 in order to establish how
large is the shift in MW induced by a particular choice
of flavor-dependent nonperturbative parameters. The
statistical uncertainty of the template-fit procedure has
been estimated by considering statistically equivalent
those templates for which ��2 = (�2

� �2
min)  1.

Consequently, we quote an uncertainty of 2.5 MeV for
each of the obtained MW shifts.

Impact on the MW determination.

The outcome of our template fit is summarized in
Tabs. I and II for 5 representative sets out of the 30
“Z-equivalent” sets. The former table lists the values of
the gaNP parameter in Eq. (2) for each of the 5 considered
flavors a = uv, dv, us, ds, s = c = b = g. The latter table
shows the corresponding shifts induced in MW when ap-
plying our analysis to the mT , pT ` distributions for the
W+ and the W� production at the LHC (

p
s = 7 TeV).

Set uv dv us ds s
1 0.34 0.26 0.46 0.59 0.32
2 0.34 0.46 0.56 0.32 0.51
3 0.55 0.34 0.33 0.55 0.30
4 0.53 0.49 0.37 0.22 0.52
5 0.42 0.38 0.29 0.57 0.27

TABLE I: Values of the gaNP parameter in Eq. (2) for the
flavors a = uv, dv, us, ds, s = c = b = g. Units are GeV2.

As expected, the shifts induced by the analysis per-

1
Our analysis is performed on 30 bins in the interval [60, 90] GeV

for mT and on 20 bins in the interval [30, 50] GeV for pT `.

4

�MW+ �MW�

Set mT pT ` mT pT `

1 0 -1 -2 3
2 0 -6 -2 0
3 -1 9 -2 -4
4 0 0 -2 -4
5 0 4 -1 -3

TABLE II: Shifts in MW± (in MeV) induced by the cor-
responding sets of flavor-dependent intrinsic transverse mo-
menta outlined in Tab. I (Statistical uncertainty: 2.5 MeV).

formed on pT ` are generally larger than for the mT case,
since the latter is less sensitive to qWT -modelling e↵ects.

For set 3, the shift induced on MW+ by the pT ` analy-
sis is 9 MeV, its size is particularly large if compared to
the corresponding uncertainty quoted by ATLAS (3 MeV).
In general, taking also into account the statistical uncer-
tainty of our analysis, the absolute value of the shifts
induced when considering the pT ` observable could ex-
ceed 10 MeV. For MW� the shifts are less significant and
fall within a 2-� interval around zero.

In the kinematic conditions under consideration, W+

bosons are dominantly produced by a ud̄ partonic pro-
cess, with the u coming from the valence region. As
a consequence, we observe that sets characterized by a
larger value of the combination guv

NP + gds
NP (sets 3 and

5) lead to positive shifts in the value of MW+ , while sets
with a smaller value of guv

NP + gds
NP (set 2) lead to neg-

ative shifts. For W� the situation is less clear, because
the dominant partonic channel is ūd, with similar con-
tributions from the valence and sea components of the
d quark. It seems that sets with smaller values of the
sum of gus

NP + gdv
NP + gus

NP + gds
NP (sets 3, 4, 5) lead to to

negative shifts in the value of MW+ . Set 1 has a large
value of the of the sum of gus

NP + gdv
NP + gus

NP + gds
NP and

leads to a positive shift in MW+ . Set 2, however, violates
the expectations based on these simple arguments.

Di↵erent flavor-dependent sets may induce artificial
asymmetric shifts for MW+ and MW� in the flavor-
independent template fits. For instance, if MW� > MW+

(which corresponds to the ATLAS findings [23]) a template
fit to the pT ` observable based on sets 1 and 2 would
lead to di↵erent shifts �MW� > �MW+ such that
the di↵erence between the two masses is enhanced. In
this case, a fit with the corresponding flavor-dependent
nonperturbative contributions would lead to a reduction
of the mass gap. On the contrary, using sets 3-5 one
would obtain the opposite result.

Outlook and future developments.

In this work, we investigated the uncertainties on the
determination of MW at the LHC induced by a possi-
ble flavor dependence of the partonic intrinsic transverse
momentum. From these outcomes, we point out that a
“flavor-blind” data analysis may not be a su�ciently ac-

curate option, especially when a total uncertainty lower
than 10 MeV is expected for MW at the LHC [46].

Future data from flavor-sensitive processes such as
SIDIS (from the 12 GeV upgrade at Je↵erson Lab [47],
from the COMPASS collaboration [48], and from a future
Electron-Ion Collider with both proton and deuteron
beams [42, 43]) will shed new light on the flavor de-
composition of the unpolarized TMD PDF. These low-
energy SIDIS data involve also the study of the flavor
dependence in the fragmentation function (the unpolar-
ized TMD FF). Therefore, new data from semi-inclusive
e+e� annihilation will also be needed for the flavor de-
composition of the TMD FF [36].

All these data will improve our knowledge of the
partonic structure of hadrons, and may help in reducing
the uncertainties in precision measurements at high
energies.
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Figure 1: Representative Feynman diagram for p(P1)+ p(P2) !
Q(PQ,1)+Q(PQ,2)+X via gluon fusion at LO in the TMD framework.

(x1, k1T , µ) and (x2, k2T , µ). Mµ⇢ is simply calculated in
perturbative QCD through a series expansion in ↵s [15]
using Feynman graphs (see Fig. 1).

Owing to process-dependent Wilson lines in the def-
inition of the correlators which they parametrise, the
TMDs are in general not universal. Physics wise, these
Wilson lines describe the non-perturbative interactions
of the active parton –the gluon in our case– with soft
spectator quarks and gluons in the nucleon before or af-
ter the hard scattering. For the production of di-leptons,
��, di-Q or boson-Q pairs via a Color-Singlet (CS) tran-
sitions [16–18] – i.e. for purely colorless final states–
in pp collisions, only initial-state interactions (ISI) be-
tween the active gluons and the spectators can occur.
Mathematically, these ISI can be encapsulated [19] in
TMDs with past-pointing Wilson lines –the exchange
can only occur before the hard scattering. Such gluon
TMDs correspond to the Weizsäcker-Williams distribu-
tions relevant for the low-x region [20, 21].

Besides, in lepton-induced production of colourful fi-
nal states, like heavy-quark pair, dijet or J/ (via Colour
Octet (CO) transitions or states) production [22–24],
to be studied at a future Electron-Ion Collider (EIC)
[25], only final-state interactions (FSI) take place. Yet,
since f g

1 and h? g
1 are time-reversal symmetric (T -even)1,

TMD factorisation tells us that one in fact probes the
same distributions in both the production of colourless
systems in hadroproduction with ISI and of colourful
systems in leptoproduction with FSI. In particular, one

1unlike other TMDs [26, 27] such as the gluon distribution in a
transversally polarised proton, also called the Sivers function [28].

expects (see [29] for further dicussions) that,

f g [�?p!QQ̄X]
1 (x, k2

T , µ) = f g [pp!QQX]
1 (x, k2

T , µ),

h?,g [�?p!QQ̄X]
1 (x, k2

T , µ) = h?,g [pp!QQX]
1 (x, k2

T , µ).
(1)

In practice, this means that one should measure these
processes at similar scales, µ. The virtuality of the o↵-
shell photon, Q, should be comparable to the invariant
mass of the quarkonium pair, MQQ. If it is not the case,
the extracted functions should be evolved to a common
scale before comparing them.

Extracting these functions in di↵erent reactions is es-
sential to test this universality property of the TMDs –
akin to the well-known sign change of the quark Sivers
e↵ect [19, 30]–, in order to validate TMD factorisation.

3. Di-Q production & TMD factorisation
For TMD factorisation to apply, di-Q production

should at least satisfy both following conditions. First,
it should result from a Single-Parton Scattering (SPS).
Second, FSI should be negligible, which is satisfied
when quarkonia are produced via CS transitions [15].
For completeness, we note that a formal proof of fac-
torisation for such processes is still lacking. We also
note that, in some recent works [31–33], TMD factori-
sation has been assumed in the description of processes
in which both ISI and FSI are present. In that regard, as
we discuss below, the processes which we consider here
are safer.

The contributions of Double-parton-scatterings
(DPSs) leading to di-J/ is below 10% for �y ⇠ 0 in
the CMS and ATLAS samples [11, 34], that is away
from the threshold with a PQT cut. In such a case,
DPSs only become significant at large �y. In the
LHCb acceptance, they cannot be neglected but can
be subtracted [12] assuming the J/ from DPSs to be
uncorrelated; this is the standard procedure at LHC
energies [35–41].

The CS dominance to the SPS yield is expected since
each CO transition goes along with a relative suppres-
sion on the order of v4 [42–44] (see [45–47] for reviews)
–v being the heavy-quark velocity in the Q rest frame.
For di-J/ production with v2

c ' 0.25, the CO/CS yield
ratio, scaling as v8

c , is expected to be below the per-cent
level since both the CO and the CS yields appear at same
order in ↵s, i.e. ↵4

s . This has been corroborated by ex-
plicit computations [34, 48, 49] with corrections from
the CO states below the per-cent level in the region rel-
evant for our study. Only in regions where DPSs are
anyhow dominant (large �y) [34, 50, 51] such CO con-
tributions might become non-negligible because of spe-
cific kinematical enhancements [34] which are however
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Figure 1: Representative Feynman diagram for p(P1)+ p(P2) !
Q(PQ,1)+Q(PQ,2)+X via gluon fusion at LO in the TMD framework.

(x1, k1T , µ) and (x2, k2T , µ). Mµ⇢ is simply calculated in
perturbative QCD through a series expansion in ↵s [15]
using Feynman graphs (see Fig. 1).

Owing to process-dependent Wilson lines in the def-
inition of the correlators which they parametrise, the
TMDs are in general not universal. Physics wise, these
Wilson lines describe the non-perturbative interactions
of the active parton –the gluon in our case– with soft
spectator quarks and gluons in the nucleon before or af-
ter the hard scattering. For the production of di-leptons,
��, di-Q or boson-Q pairs via a Color-Singlet (CS) tran-
sitions [16–18] – i.e. for purely colorless final states–
in pp collisions, only initial-state interactions (ISI) be-
tween the active gluons and the spectators can occur.
Mathematically, these ISI can be encapsulated [19] in
TMDs with past-pointing Wilson lines –the exchange
can only occur before the hard scattering. Such gluon
TMDs correspond to the Weizsäcker-Williams distribu-
tions relevant for the low-x region [20, 21].

Besides, in lepton-induced production of colourful fi-
nal states, like heavy-quark pair, dijet or J/ (via Colour
Octet (CO) transitions or states) production [22–24],
to be studied at a future Electron-Ion Collider (EIC)
[25], only final-state interactions (FSI) take place. Yet,
since f g

1 and h? g
1 are time-reversal symmetric (T -even)1,

TMD factorisation tells us that one in fact probes the
same distributions in both the production of colourless
systems in hadroproduction with ISI and of colourful
systems in leptoproduction with FSI. In particular, one

1unlike other TMDs [26, 27] such as the gluon distribution in a
transversally polarised proton, also called the Sivers function [28].

expects (see [29] for further dicussions) that,

f g [�?p!QQ̄X]
1 (x, k2

T , µ) = f g [pp!QQX]
1 (x, k2

T , µ),

h?,g [�?p!QQ̄X]
1 (x, k2

T , µ) = h?,g [pp!QQX]
1 (x, k2

T , µ).
(1)

In practice, this means that one should measure these
processes at similar scales, µ. The virtuality of the o↵-
shell photon, Q, should be comparable to the invariant
mass of the quarkonium pair, MQQ. If it is not the case,
the extracted functions should be evolved to a common
scale before comparing them.

Extracting these functions in di↵erent reactions is es-
sential to test this universality property of the TMDs –
akin to the well-known sign change of the quark Sivers
e↵ect [19, 30]–, in order to validate TMD factorisation.

3. Di-Q production & TMD factorisation
For TMD factorisation to apply, di-Q production

should at least satisfy both following conditions. First,
it should result from a Single-Parton Scattering (SPS).
Second, FSI should be negligible, which is satisfied
when quarkonia are produced via CS transitions [15].
For completeness, we note that a formal proof of fac-
torisation for such processes is still lacking. We also
note that, in some recent works [31–33], TMD factori-
sation has been assumed in the description of processes
in which both ISI and FSI are present. In that regard, as
we discuss below, the processes which we consider here
are safer.

The contributions of Double-parton-scatterings
(DPSs) leading to di-J/ is below 10% for �y ⇠ 0 in
the CMS and ATLAS samples [11, 34], that is away
from the threshold with a PQT cut. In such a case,
DPSs only become significant at large �y. In the
LHCb acceptance, they cannot be neglected but can
be subtracted [12] assuming the J/ from DPSs to be
uncorrelated; this is the standard procedure at LHC
energies [35–41].

The CS dominance to the SPS yield is expected since
each CO transition goes along with a relative suppres-
sion on the order of v4 [42–44] (see [45–47] for reviews)
–v being the heavy-quark velocity in the Q rest frame.
For di-J/ production with v2

c ' 0.25, the CO/CS yield
ratio, scaling as v8

c , is expected to be below the per-cent
level since both the CO and the CS yields appear at same
order in ↵s, i.e. ↵4

s . This has been corroborated by ex-
plicit computations [34, 48, 49] with corrections from
the CO states below the per-cent level in the region rel-
evant for our study. Only in regions where DPSs are
anyhow dominant (large �y) [34, 50, 51] such CO con-
tributions might become non-negligible because of spe-
cific kinematical enhancements [34] which are however
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Figure 1. The cross section in eq. (4.2) integrated over all rapidity range with artemide2.01 at NNLO
and PYTHIA. The errors of PYTHIA are included, although not clearly visible. The shaded area shows
the variation band in µ̃, see eq. (3.18).

Figure 2. (left) The lpTMDPDF, eq. (2.15-2.16), as a function of b at x = 0.01. The shaded area shows
the variation band in µ̃, see eq. (3.18). (right) Comparison of Higgs-production cross-section with variation
band to the measurement presented in [68] by CMS collaboration.

non-perturbative function for quarks extracted from a fit of Drell-Yan and Z-boson production data
using artemide2.01. The details of this fit have been illustrated in ref. [21, 22], and this version
of the code takes into account the improvements coming from ref. [65]. The TMD evolution kernel
for gluons should be also provided by a non-perturbative part at large value of b, whose precise
analytical form is given in [22]. The perturbative calculable parts of the evolution kernel differ
in quark and gluon case (at the order that we work) by the Casimir scaling factor CA/CF . Here
we have assumed the same scaling for the un-calculable non-perturbative pieces of the evolution
kernel. The error band of our prediction come from scale variations of a factor of 2, consistently
with ⇣-prescription [19].

In order to check the viability of the model assumptions we have compared the cross section
in eq. (4.2), integrated in rapidity, with PYTHIA [66, 67]. The agreement of our prediction at
NNLO and PYTHIA is shown in fig. 1 and it is extremely good in the range of qT where the TMD
factorization theorem is expected to hold. In that figure we have also included the error provided
by PYTHIA, although it is not clearly visible.

In fig. 2 (left) we have plotted lpTMDPDF, eq. (2.15-2.16), as a function of b at x = 0.01 at
NLO and at NNLO. The NNLO includes the perturbative correction to the first non-trivial order
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Figure 1: Representative Feynman diagram for p(P1)+ p(P2) !
Q(PQ,1)+Q(PQ,2)+X via gluon fusion at LO in the TMD framework.

(x1, k1T , µ) and (x2, k2T , µ). Mµ⇢ is simply calculated in
perturbative QCD through a series expansion in ↵s [15]
using Feynman graphs (see Fig. 1).

Owing to process-dependent Wilson lines in the def-
inition of the correlators which they parametrise, the
TMDs are in general not universal. Physics wise, these
Wilson lines describe the non-perturbative interactions
of the active parton –the gluon in our case– with soft
spectator quarks and gluons in the nucleon before or af-
ter the hard scattering. For the production of di-leptons,
��, di-Q or boson-Q pairs via a Color-Singlet (CS) tran-
sitions [16–18] – i.e. for purely colorless final states–
in pp collisions, only initial-state interactions (ISI) be-
tween the active gluons and the spectators can occur.
Mathematically, these ISI can be encapsulated [19] in
TMDs with past-pointing Wilson lines –the exchange
can only occur before the hard scattering. Such gluon
TMDs correspond to the Weizsäcker-Williams distribu-
tions relevant for the low-x region [20, 21].

Besides, in lepton-induced production of colourful fi-
nal states, like heavy-quark pair, dijet or J/ (via Colour
Octet (CO) transitions or states) production [22–24],
to be studied at a future Electron-Ion Collider (EIC)
[25], only final-state interactions (FSI) take place. Yet,
since f g

1 and h? g
1 are time-reversal symmetric (T -even)1,

TMD factorisation tells us that one in fact probes the
same distributions in both the production of colourless
systems in hadroproduction with ISI and of colourful
systems in leptoproduction with FSI. In particular, one

1unlike other TMDs [26, 27] such as the gluon distribution in a
transversally polarised proton, also called the Sivers function [28].

expects (see [29] for further dicussions) that,

f g [�?p!QQ̄X]
1 (x, k2

T , µ) = f g [pp!QQX]
1 (x, k2

T , µ),

h?,g [�?p!QQ̄X]
1 (x, k2

T , µ) = h?,g [pp!QQX]
1 (x, k2

T , µ).
(1)

In practice, this means that one should measure these
processes at similar scales, µ. The virtuality of the o↵-
shell photon, Q, should be comparable to the invariant
mass of the quarkonium pair, MQQ. If it is not the case,
the extracted functions should be evolved to a common
scale before comparing them.

Extracting these functions in di↵erent reactions is es-
sential to test this universality property of the TMDs –
akin to the well-known sign change of the quark Sivers
e↵ect [19, 30]–, in order to validate TMD factorisation.

3. Di-Q production & TMD factorisation
For TMD factorisation to apply, di-Q production

should at least satisfy both following conditions. First,
it should result from a Single-Parton Scattering (SPS).
Second, FSI should be negligible, which is satisfied
when quarkonia are produced via CS transitions [15].
For completeness, we note that a formal proof of fac-
torisation for such processes is still lacking. We also
note that, in some recent works [31–33], TMD factori-
sation has been assumed in the description of processes
in which both ISI and FSI are present. In that regard, as
we discuss below, the processes which we consider here
are safer.

The contributions of Double-parton-scatterings
(DPSs) leading to di-J/ is below 10% for �y ⇠ 0 in
the CMS and ATLAS samples [11, 34], that is away
from the threshold with a PQT cut. In such a case,
DPSs only become significant at large �y. In the
LHCb acceptance, they cannot be neglected but can
be subtracted [12] assuming the J/ from DPSs to be
uncorrelated; this is the standard procedure at LHC
energies [35–41].

The CS dominance to the SPS yield is expected since
each CO transition goes along with a relative suppres-
sion on the order of v4 [42–44] (see [45–47] for reviews)
–v being the heavy-quark velocity in the Q rest frame.
For di-J/ production with v2

c ' 0.25, the CO/CS yield
ratio, scaling as v8

c , is expected to be below the per-cent
level since both the CO and the CS yields appear at same
order in ↵s, i.e. ↵4

s . This has been corroborated by ex-
plicit computations [34, 48, 49] with corrections from
the CO states below the per-cent level in the region rel-
evant for our study. Only in regions where DPSs are
anyhow dominant (large �y) [34, 50, 51] such CO con-
tributions might become non-negligible because of spe-
cific kinematical enhancements [34] which are however
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Figure 1. The cross section in eq. (4.2) integrated over all rapidity range with artemide2.01 at NNLO
and PYTHIA. The errors of PYTHIA are included, although not clearly visible. The shaded area shows
the variation band in µ̃, see eq. (3.18).

Figure 2. (left) The lpTMDPDF, eq. (2.15-2.16), as a function of b at x = 0.01. The shaded area shows
the variation band in µ̃, see eq. (3.18). (right) Comparison of Higgs-production cross-section with variation
band to the measurement presented in [68] by CMS collaboration.

non-perturbative function for quarks extracted from a fit of Drell-Yan and Z-boson production data
using artemide2.01. The details of this fit have been illustrated in ref. [21, 22], and this version
of the code takes into account the improvements coming from ref. [65]. The TMD evolution kernel
for gluons should be also provided by a non-perturbative part at large value of b, whose precise
analytical form is given in [22]. The perturbative calculable parts of the evolution kernel differ
in quark and gluon case (at the order that we work) by the Casimir scaling factor CA/CF . Here
we have assumed the same scaling for the un-calculable non-perturbative pieces of the evolution
kernel. The error band of our prediction come from scale variations of a factor of 2, consistently
with ⇣-prescription [19].

In order to check the viability of the model assumptions we have compared the cross section
in eq. (4.2), integrated in rapidity, with PYTHIA [66, 67]. The agreement of our prediction at
NNLO and PYTHIA is shown in fig. 1 and it is extremely good in the range of qT where the TMD
factorization theorem is expected to hold. In that figure we have also included the error provided
by PYTHIA, although it is not clearly visible.

In fig. 2 (left) we have plotted lpTMDPDF, eq. (2.15-2.16), as a function of b at x = 0.01 at
NLO and at NNLO. The NNLO includes the perturbative correction to the first non-trivial order
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Fig. 3 (a) The normalised PQQT -spectrum for J/ -pair production
at M  = 8 GeV using two gluon TMDs. The first is a Gaussian Ansatz
with hk 2

T i = 3.3 ± 0.8 GeV2 obtained from the LHCb data [30] (the
red curve shows the central value and the gray band the associated
uncertainty). The second is the result of our present study with TMD
evolution. The green band results from the uncertainty on the bT -width
of the nonperturbative Sudakov factor SNP. The estimated DPS contri-
bution has been subtracted from the LHCb data (black crosses) which
were also normalized over the interval. (b) The PQQT -spectrum using
our evolved gluon TMDs at MQQ = 12, 20 and 30 GeV for the same
uncertainty on the bT -width.

function generated by the angular integral and the weights.
Because h̃

? g
1 is of order ↵s, it is naturally suppressed in

comparison to f
g
1 . Moreover, ↵s(µb) is growing with bT

(up to its bound ↵s(b0/bT max)) and h̃
? g
1 is also broader

in bT than f
g
1 . The presence of h̃

? g
1 in a given convolu-

tion therefore contributes to reduce the magnitude of the
integrand, and to its bT -broadening. These effects con-
tribute to strongly suppress C

h
w2 h

? g
1 h

? g
1

i
with respect to

C

h
f

g
1 f

g
1

i
. C

h
w2 h

? g
1 h

? g
1

i
is of order ↵2

s and its integrand
is significantly broadened in bT , meaning it falls faster than
C

h
f

g
1 f

g
1

i
with increasing PQQT . Indeed, as a consequence

of the bT -broadening, more oscillations of the J0 Bessel
function occur in the integrand of C

h
w2 h

? g
1 h

? g
1

i
than of

C

h
f

g
1 f

g
1

i
, before being dampened by the Sudakov factors at

large bT . Each additional oscillation in the integrand brings
the convolution value closer to zero. More oscillations are
packed in a given bT -range when PQQT increases, widen-
ing the gap between the two convolutions, and effectively
making the ratio fall with PQQT . This additional effect
renders the F2 C

h
w2 h

? g
1 h

? g
1

i
term truly negligible in the

cross-section for J/ -pair production. It also means that in
other processes where the hard-scattering coefficient F2 may
be large, the convolution itself would remain relatively small
at scales larger than a few GeV. Besides, its influence on the
cross-section will be strongest at the smallest TM.

The situation is different for the azimuthal asymme-
tries, which involve convolutions in the numerator that con-
tain either the J2 or J4 Bessel functions. Such functions
are 0 at bT =0 and then grow in magnitude. The conse-
quence is that the bT -integrals containing such functions
benefit from unsuppressed intermediate bT values. At some
point, undampened large-bT oscillations will bring the inte-
gral value down toward 0 in a similar way as for C

h
f

g
1 f

g
1

i

and C

h
w2 h

? g
1 h

? g
1

i
. Therefore, the C

h
w3 f

g
1 h
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i
and
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h
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? g
1 h
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1

i
convolutions first grow with PQQT up to a

peak maximum, and then decrease in value like C

h
f

g
1 f

g
1

i

does. Another crucial difference is that the envelopes of
J2 and J4 tend slower toward 0 than the J0 one with in-
creasing bT . The consequence is that C

h
w3 f

g
1 h

? g
1

i
and

C

h
w4 h

? g
1 h

? g
1

i
fall slower than C

h
f

g
1 f

g
1

i
with PQQT .

Hence the convolution ratios, and the azimuthal asymme-
tries, always grow with PQQT , as can be seen in Fig. 4. In
addition, as the large bT values are less suppressed than in
C

h
f

g
1 f

g
1

i
, the azimuthal asymmetries are also more sensi-

tive to the variations of the nonperturbative Sudakov SNP.
The effect is more pronounced for C

h
w4 h

? g
1 h

? g
1

i
since it

contains h̃? g
1 twice and a broader Bessel function.

Fig. 4b displays the cos(2�CS) asymmetry as a func-
tion of PQQT in the forward single J/ rapidity region
(larger cos(✓CS)) while 4c displays the cos(4�CS) asym-
metry in the central rapidity region (small cos(✓CS) with
x1 ' x2). Such choices maximize the size of the asymme-
tries as the associated hard-scattering coefficients are larger
in these regions, without modifying the shapes of the asym-
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Figure 1: Representative Feynman diagram for p(P1)+ p(P2) !
Q(PQ,1)+Q(PQ,2)+X via gluon fusion at LO in the TMD framework.

(x1, k1T , µ) and (x2, k2T , µ). Mµ⇢ is simply calculated in
perturbative QCD through a series expansion in ↵s [15]
using Feynman graphs (see Fig. 1).

Owing to process-dependent Wilson lines in the def-
inition of the correlators which they parametrise, the
TMDs are in general not universal. Physics wise, these
Wilson lines describe the non-perturbative interactions
of the active parton –the gluon in our case– with soft
spectator quarks and gluons in the nucleon before or af-
ter the hard scattering. For the production of di-leptons,
��, di-Q or boson-Q pairs via a Color-Singlet (CS) tran-
sitions [16–18] – i.e. for purely colorless final states–
in pp collisions, only initial-state interactions (ISI) be-
tween the active gluons and the spectators can occur.
Mathematically, these ISI can be encapsulated [19] in
TMDs with past-pointing Wilson lines –the exchange
can only occur before the hard scattering. Such gluon
TMDs correspond to the Weizsäcker-Williams distribu-
tions relevant for the low-x region [20, 21].

Besides, in lepton-induced production of colourful fi-
nal states, like heavy-quark pair, dijet or J/ (via Colour
Octet (CO) transitions or states) production [22–24],
to be studied at a future Electron-Ion Collider (EIC)
[25], only final-state interactions (FSI) take place. Yet,
since f g

1 and h? g
1 are time-reversal symmetric (T -even)1,

TMD factorisation tells us that one in fact probes the
same distributions in both the production of colourless
systems in hadroproduction with ISI and of colourful
systems in leptoproduction with FSI. In particular, one

1unlike other TMDs [26, 27] such as the gluon distribution in a
transversally polarised proton, also called the Sivers function [28].

expects (see [29] for further dicussions) that,

f g [�?p!QQ̄X]
1 (x, k2

T , µ) = f g [pp!QQX]
1 (x, k2

T , µ),

h?,g [�?p!QQ̄X]
1 (x, k2

T , µ) = h?,g [pp!QQX]
1 (x, k2

T , µ).
(1)

In practice, this means that one should measure these
processes at similar scales, µ. The virtuality of the o↵-
shell photon, Q, should be comparable to the invariant
mass of the quarkonium pair, MQQ. If it is not the case,
the extracted functions should be evolved to a common
scale before comparing them.

Extracting these functions in di↵erent reactions is es-
sential to test this universality property of the TMDs –
akin to the well-known sign change of the quark Sivers
e↵ect [19, 30]–, in order to validate TMD factorisation.

3. Di-Q production & TMD factorisation
For TMD factorisation to apply, di-Q production

should at least satisfy both following conditions. First,
it should result from a Single-Parton Scattering (SPS).
Second, FSI should be negligible, which is satisfied
when quarkonia are produced via CS transitions [15].
For completeness, we note that a formal proof of fac-
torisation for such processes is still lacking. We also
note that, in some recent works [31–33], TMD factori-
sation has been assumed in the description of processes
in which both ISI and FSI are present. In that regard, as
we discuss below, the processes which we consider here
are safer.

The contributions of Double-parton-scatterings
(DPSs) leading to di-J/ is below 10% for �y ⇠ 0 in
the CMS and ATLAS samples [11, 34], that is away
from the threshold with a PQT cut. In such a case,
DPSs only become significant at large �y. In the
LHCb acceptance, they cannot be neglected but can
be subtracted [12] assuming the J/ from DPSs to be
uncorrelated; this is the standard procedure at LHC
energies [35–41].

The CS dominance to the SPS yield is expected since
each CO transition goes along with a relative suppres-
sion on the order of v4 [42–44] (see [45–47] for reviews)
–v being the heavy-quark velocity in the Q rest frame.
For di-J/ production with v2

c ' 0.25, the CO/CS yield
ratio, scaling as v8

c , is expected to be below the per-cent
level since both the CO and the CS yields appear at same
order in ↵s, i.e. ↵4

s . This has been corroborated by ex-
plicit computations [34, 48, 49] with corrections from
the CO states below the per-cent level in the region rel-
evant for our study. Only in regions where DPSs are
anyhow dominant (large �y) [34, 50, 51] such CO con-
tributions might become non-negligible because of spe-
cific kinematical enhancements [34] which are however
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Figure 1. The cross section in eq. (4.2) integrated over all rapidity range with artemide2.01 at NNLO
and PYTHIA. The errors of PYTHIA are included, although not clearly visible. The shaded area shows
the variation band in µ̃, see eq. (3.18).

Figure 2. (left) The lpTMDPDF, eq. (2.15-2.16), as a function of b at x = 0.01. The shaded area shows
the variation band in µ̃, see eq. (3.18). (right) Comparison of Higgs-production cross-section with variation
band to the measurement presented in [68] by CMS collaboration.

non-perturbative function for quarks extracted from a fit of Drell-Yan and Z-boson production data
using artemide2.01. The details of this fit have been illustrated in ref. [21, 22], and this version
of the code takes into account the improvements coming from ref. [65]. The TMD evolution kernel
for gluons should be also provided by a non-perturbative part at large value of b, whose precise
analytical form is given in [22]. The perturbative calculable parts of the evolution kernel differ
in quark and gluon case (at the order that we work) by the Casimir scaling factor CA/CF . Here
we have assumed the same scaling for the un-calculable non-perturbative pieces of the evolution
kernel. The error band of our prediction come from scale variations of a factor of 2, consistently
with ⇣-prescription [19].

In order to check the viability of the model assumptions we have compared the cross section
in eq. (4.2), integrated in rapidity, with PYTHIA [66, 67]. The agreement of our prediction at
NNLO and PYTHIA is shown in fig. 1 and it is extremely good in the range of qT where the TMD
factorization theorem is expected to hold. In that figure we have also included the error provided
by PYTHIA, although it is not clearly visible.

In fig. 2 (left) we have plotted lpTMDPDF, eq. (2.15-2.16), as a function of b at x = 0.01 at
NLO and at NNLO. The NNLO includes the perturbative correction to the first non-trivial order
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Fig. 3 (a) The normalised PQQT -spectrum for J/ -pair production
at M  = 8 GeV using two gluon TMDs. The first is a Gaussian Ansatz
with hk 2

T i = 3.3 ± 0.8 GeV2 obtained from the LHCb data [30] (the
red curve shows the central value and the gray band the associated
uncertainty). The second is the result of our present study with TMD
evolution. The green band results from the uncertainty on the bT -width
of the nonperturbative Sudakov factor SNP. The estimated DPS contri-
bution has been subtracted from the LHCb data (black crosses) which
were also normalized over the interval. (b) The PQQT -spectrum using
our evolved gluon TMDs at MQQ = 12, 20 and 30 GeV for the same
uncertainty on the bT -width.

function generated by the angular integral and the weights.
Because h̃

? g
1 is of order ↵s, it is naturally suppressed in

comparison to f
g
1 . Moreover, ↵s(µb) is growing with bT

(up to its bound ↵s(b0/bT max)) and h̃
? g
1 is also broader

in bT than f
g
1 . The presence of h̃

? g
1 in a given convolu-

tion therefore contributes to reduce the magnitude of the
integrand, and to its bT -broadening. These effects con-
tribute to strongly suppress C

h
w2 h
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1

i
with respect to
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is of order ↵2

s and its integrand
is significantly broadened in bT , meaning it falls faster than
C

h
f

g
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i
with increasing PQQT . Indeed, as a consequence

of the bT -broadening, more oscillations of the J0 Bessel
function occur in the integrand of C

h
w2 h

? g
1 h

? g
1

i
than of

C

h
f

g
1 f

g
1

i
, before being dampened by the Sudakov factors at

large bT . Each additional oscillation in the integrand brings
the convolution value closer to zero. More oscillations are
packed in a given bT -range when PQQT increases, widen-
ing the gap between the two convolutions, and effectively
making the ratio fall with PQQT . This additional effect
renders the F2 C

h
w2 h

? g
1 h

? g
1

i
term truly negligible in the

cross-section for J/ -pair production. It also means that in
other processes where the hard-scattering coefficient F2 may
be large, the convolution itself would remain relatively small
at scales larger than a few GeV. Besides, its influence on the
cross-section will be strongest at the smallest TM.

The situation is different for the azimuthal asymme-
tries, which involve convolutions in the numerator that con-
tain either the J2 or J4 Bessel functions. Such functions
are 0 at bT =0 and then grow in magnitude. The conse-
quence is that the bT -integrals containing such functions
benefit from unsuppressed intermediate bT values. At some
point, undampened large-bT oscillations will bring the inte-
gral value down toward 0 in a similar way as for C

h
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g
1 f

g
1

i

and C
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i
. Therefore, the C
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and
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convolutions first grow with PQQT up to a

peak maximum, and then decrease in value like C
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i

does. Another crucial difference is that the envelopes of
J2 and J4 tend slower toward 0 than the J0 one with in-
creasing bT . The consequence is that C

h
w3 f

g
1 h

? g
1

i
and

C

h
w4 h

? g
1 h

? g
1

i
fall slower than C

h
f

g
1 f

g
1

i
with PQQT .

Hence the convolution ratios, and the azimuthal asymme-
tries, always grow with PQQT , as can be seen in Fig. 4. In
addition, as the large bT values are less suppressed than in
C

h
f

g
1 f

g
1

i
, the azimuthal asymmetries are also more sensi-

tive to the variations of the nonperturbative Sudakov SNP.
The effect is more pronounced for C

h
w4 h

? g
1 h

? g
1

i
since it

contains h̃? g
1 twice and a broader Bessel function.

Fig. 4b displays the cos(2�CS) asymmetry as a func-
tion of PQQT in the forward single J/ rapidity region
(larger cos(✓CS)) while 4c displays the cos(4�CS) asym-
metry in the central rapidity region (small cos(✓CS) with
x1 ' x2). Such choices maximize the size of the asymme-
tries as the associated hard-scattering coefficients are larger
in these regions, without modifying the shapes of the asym-
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Figure 1: Representative Feynman diagram for p(P1)+ p(P2) !
Q(PQ,1)+Q(PQ,2)+X via gluon fusion at LO in the TMD framework.

(x1, k1T , µ) and (x2, k2T , µ). Mµ⇢ is simply calculated in
perturbative QCD through a series expansion in ↵s [15]
using Feynman graphs (see Fig. 1).

Owing to process-dependent Wilson lines in the def-
inition of the correlators which they parametrise, the
TMDs are in general not universal. Physics wise, these
Wilson lines describe the non-perturbative interactions
of the active parton –the gluon in our case– with soft
spectator quarks and gluons in the nucleon before or af-
ter the hard scattering. For the production of di-leptons,
��, di-Q or boson-Q pairs via a Color-Singlet (CS) tran-
sitions [16–18] – i.e. for purely colorless final states–
in pp collisions, only initial-state interactions (ISI) be-
tween the active gluons and the spectators can occur.
Mathematically, these ISI can be encapsulated [19] in
TMDs with past-pointing Wilson lines –the exchange
can only occur before the hard scattering. Such gluon
TMDs correspond to the Weizsäcker-Williams distribu-
tions relevant for the low-x region [20, 21].

Besides, in lepton-induced production of colourful fi-
nal states, like heavy-quark pair, dijet or J/ (via Colour
Octet (CO) transitions or states) production [22–24],
to be studied at a future Electron-Ion Collider (EIC)
[25], only final-state interactions (FSI) take place. Yet,
since f g

1 and h? g
1 are time-reversal symmetric (T -even)1,

TMD factorisation tells us that one in fact probes the
same distributions in both the production of colourless
systems in hadroproduction with ISI and of colourful
systems in leptoproduction with FSI. In particular, one

1unlike other TMDs [26, 27] such as the gluon distribution in a
transversally polarised proton, also called the Sivers function [28].

expects (see [29] for further dicussions) that,

f g [�?p!QQ̄X]
1 (x, k2

T , µ) = f g [pp!QQX]
1 (x, k2

T , µ),

h?,g [�?p!QQ̄X]
1 (x, k2

T , µ) = h?,g [pp!QQX]
1 (x, k2

T , µ).
(1)

In practice, this means that one should measure these
processes at similar scales, µ. The virtuality of the o↵-
shell photon, Q, should be comparable to the invariant
mass of the quarkonium pair, MQQ. If it is not the case,
the extracted functions should be evolved to a common
scale before comparing them.

Extracting these functions in di↵erent reactions is es-
sential to test this universality property of the TMDs –
akin to the well-known sign change of the quark Sivers
e↵ect [19, 30]–, in order to validate TMD factorisation.

3. Di-Q production & TMD factorisation
For TMD factorisation to apply, di-Q production

should at least satisfy both following conditions. First,
it should result from a Single-Parton Scattering (SPS).
Second, FSI should be negligible, which is satisfied
when quarkonia are produced via CS transitions [15].
For completeness, we note that a formal proof of fac-
torisation for such processes is still lacking. We also
note that, in some recent works [31–33], TMD factori-
sation has been assumed in the description of processes
in which both ISI and FSI are present. In that regard, as
we discuss below, the processes which we consider here
are safer.

The contributions of Double-parton-scatterings
(DPSs) leading to di-J/ is below 10% for �y ⇠ 0 in
the CMS and ATLAS samples [11, 34], that is away
from the threshold with a PQT cut. In such a case,
DPSs only become significant at large �y. In the
LHCb acceptance, they cannot be neglected but can
be subtracted [12] assuming the J/ from DPSs to be
uncorrelated; this is the standard procedure at LHC
energies [35–41].

The CS dominance to the SPS yield is expected since
each CO transition goes along with a relative suppres-
sion on the order of v4 [42–44] (see [45–47] for reviews)
–v being the heavy-quark velocity in the Q rest frame.
For di-J/ production with v2

c ' 0.25, the CO/CS yield
ratio, scaling as v8

c , is expected to be below the per-cent
level since both the CO and the CS yields appear at same
order in ↵s, i.e. ↵4

s . This has been corroborated by ex-
plicit computations [34, 48, 49] with corrections from
the CO states below the per-cent level in the region rel-
evant for our study. Only in regions where DPSs are
anyhow dominant (large �y) [34, 50, 51] such CO con-
tributions might become non-negligible because of spe-
cific kinematical enhancements [34] which are however

2

Quarkonium-pair production
Scarpa, Boer, Echevarria, Lansberg, 
Pisano, Schlegel, arXiv:1909.05769 

Gutierrez-Reyes, Leal-Gomez, Scimemi, 
Vladimirov, arXiv:1907.03780 

Also linearly polarized 
gluon TMD is involved!
Also linearly polarized 
gluon TMD is involved!

see also talk by Raj Kishore for other process

http://arxiv.org/abs/arXiv:1907.03780
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Fig. 6: Same as Fig. 5 for 0.3 < z < 0.4.
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Fig. 7: Same as Fig. 5 for 0.4 < z < 0.6.
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COMPASS is in “full swing” mode. 
Proton-target data are also expected
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circles), and unidentified hadrons, as measured by COMPASS on a 6LiD target (grey squares), as a function of xB, z, and Ph?. The open data
points from the HERMES measurement represent the region for which z > 0.7, and are not included in the representations as a function of xB and
Ph?, while the COMPASS measurement covers the range up to z = 0.85 for all projections. The error bars represent the statistical uncertainties,
while the error bands represent systematic uncertainties. In addition, there is a systematic uncertainty for the HERMES results originating from
the measurement of the beam polarization, corresponding to a scale factor of 3%.
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Ph?, while the COMPASS measurement covers the range up to z = 0.85 for all projections. The error bars represent the statistical uncertainties,
while the error bands represent systematic uncertainties. In addition, there is a systematic uncertainty for the HERMES results originating from
the measurement of the beam polarization, corresponding to a scale factor of 3%.
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LHCb FIXED TARGET, INCLUDING POLARISATION 

50

Polarised target

VELO 
and SMOG2

Well consolidated technique 

Design follows the successful HERMES Polarised Gas Target  which ran at HERA 1996 – 
2005, and the follow-up PAX target operational at COSY (FZ Jülich)

!16

PGT experimental set-up

IH (100 % HERMES ABS flow) = 6.5·1016/s by a cell 30 cm long, 1.0 cm i.d., at 100K, with feed tube 10 cm long, 1.0 cm i.d.  
The resulting 100% PGT density is θ = 1.2 · 1014 cm-2  
For the future HL-LHC-25ns, the maximum Luminosity would be up to 8.3· 1032 cm-2 s-1  

https://indico.cern.ch/event/755856/
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SMOG2  

not only a 
project itself

R&D

Phase II 
transversely 

polarised H and 
D target

!15

Polarised target

VELO 
and SMOG2

Well consolidated technique 

Design follows the successful HERMES Polarised Gas Target  which ran at HERA 1996 – 
2005, and the follow-up PAX target operational at COSY (FZ Jülich)

!16
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7

Possible target locations and acceptance

Target z = 0

Target z = -2.75 m

Target z = -4.7 m

LHCb, target z = 0

TPC Muon det.

The acceptances of the TPC calculated 
assuming reduced track length (1/3 of the full 
radial track length), which results in |η|<1.5 in 
a collider mode.

Possible fixed-target positioning
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THE ELECTRON-ION COLLIDER PROJECT
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eRHIC Design Concept

• eRHIC is based on the RHIC complex: Storage ring (Yellow Ring), injectors, ion 
sources, infrastructure, which need only relaBvely few modificaBons and 
upgrades

• A (5-18) GeV electron storage ring & its injectors are added to the RHIC 
complex è Ecm = (20-140) GeV

• To minimize risk, the eRHIC design is opBmized under the assumpBon that 
each beam will have the parameters (in parBcular beam-beam tune-shiU) 
that have been demonstrated in collisions in other colliders

• The requirement to store electron beams with a variable spin paWern 
requires an on-energy, spin transparent injector

• The total power of synchrotron radiaBon of the electron beam is assumed to 
be limited to 10 MW. This is a design choice. 

The eRHIC design goal has been adapted to  
reach the upper limit of the EIC White Paper 
luminosity range: L= 1034  cm-2s-1 with strong 
hadron cooling

15

BNL concept JLab concept

JLEIC Design Update (Oct. 2018)

JLEIC Design Update (Oct. 2018) 3

arXiv:1504.07961

2015 2017 2018

Update History

Document
Under development

This Update

Fundamental concept unchanged 
This update:
• IncreaƐe яƐ range 

by increasing ion 
ring dipoles from 
3TÆ6T. 

• Keep the land 
footprint of the 
design the same.

• The luminosity 
performance 
satisfies the 
requirements.

• IR design retains 
high acceptance.

• Polarization 
remains high.

• Relatively small 
design changes 

➤ High luminosity: (1034 cm−2 s−1) 

➤ Variable CM energy: 20-100 GeV 

➤ Highly polarized beams 

➤ Protons and other nuclei
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CONCLUSIONS

➤ Full-fledged TMD extractions up to NN3LL accuracy are coming 
out and being constantly improved

➤ For the moment, it is not straightforward to compare different 
extractions

➤ Fragmentation functions need independent data

➤ Flavor dependence of TMDs still not well constrained

➤ We expect a steady flow of data coming up in the next years
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10

lidity of the W -term approximation does not end at a
sharp point in qT, and thus a smooth function character-
izes general physical expectations. A reasonable choice
is

Ξ

(

qT
Q

, η

)

= exp

[

−

(

qT
ηQ

)aΞ
]

, (39)

with aΞ > 2.
The only differences between the old and new W -term

are: i) the use of bc(bT) rather than bT in W̃ , and ii) the
multiplication by Ξ(qT/Q, η). (The second modification
was proposed by Collins in Ref. [4, Eq. (13.75)]. There Ξ
is called F (qT/Q).) Equation (38) matches the standard
definition in the limit that C5 and η approach infinity.
Finally, we will present a fully optimized formula for

WNew(qT, Q; η, C5) corresponding to the one for the orig-
inal W (qT, Q) in Eq. (35).
But first it will be convenient to construct some auxil-

iary results.
Naturally, b∗ is to be replaced by

b∗(bc(bT)) =

√

b2T + b20/(C
2
5Q

2)

1 + b2T/b
2
max + b20/(C

2
5Q

2b2max)
. (40)

Also we define

bmin ≡ b∗(bc(0)) =
b0

C5Q

√

1

1 + b20/(C
2
5Q

2b2max)
. (41)

Then, for large enough Q and bmax

bmin ≈
b0

C5Q
. (42)

Thus, bmin decreases like 1/Q, in contrast to bmax which
remains fixed. Note also that

b∗(bc(bT)) −→











bmin bT % bmin

bT bmin % bT % bmax

bmax bT & bmax .

(43)

For bT % 1/Q, b∗(bc(bT)) ≈ b∗(bT). Instead of µb∗ , we
will ultimately use the scale

µ̄ ≡
C1

b∗(bc(bT))
(44)

to implement renormalization group improvement in
TMD correlation functions. There is a maximum cut-
off on the renormalization scale equal to

µc ≡ lim
bT→0

µ̄ =
C1C5Q

b0

√

1 +
b20

C2
5 b

2
maxQ

2
≈

C1C5Q

b0
.

(45)
The approximation sign corresponds to the limit of large
Qbmax. Note that,

bminµc = C1 . (46)

The steps for finding a useful formula for the evolved WNew(qT, Q; η, C5) are as follows. Equation (32) becomes

WNew(qT, Q; η, C5) = Ξ

(

qT
Q

, η

)
∫

d2bT
(2π)2

eiqT·bTW̃NP(bc(bT), Q)W̃ (b∗(bc(bT)), Q) . (47)

Now the definition of W̃ (bT, Q) is unchanged, and only the bT → bc(bT) replacement is new. Therefore instead of
Eq. (35) we simply need

W̃ (bc(bT), Q) = H(µQ, Q)
∑

j′i′

∫ 1

xA

dx̂

x̂
C̃pdf

j/j′ (xA/x̂, b∗(bc(bT)); µ̄
2, µ̄,αs(µ̄))fj′/A(x̂; µ̄)×

×

∫ 1

zB

dẑ

ẑ3
C̃ff

i′/j(zB/ẑ, b∗(bc(bT)); µ̄
2, µ̄,αs(µ̄))dB/i′ (ẑ; µ̄)×

× exp

{

ln
Q2

µ̄2
K̃(b∗(bc(bT)); µ̄) +

∫ µQ

µ̄

dµ′

µ′

[

2γ(αs(µ
′); 1)− ln

Q2

µ′2
γK(αs(µ

′))

]}

× exp

{

−gA(xA, bc(bT); bmax)− gB(zB, bc(bT); bmax)− 2gK(bc(bT); bmax) ln

(

Q

Q0

)}

. (48)

This is the same as Eq. (35) except that b∗(bc(bT)) and µ̄ = C1/b∗(bc(bT)) are used instead of b∗(bT) and
µb∗ = C1/b∗(bT). Note that gK(bc(bT); bmax) depends on Q through bc, albeit only for bT ! 1/Q. For bT & 1/Q,
gK(bc(bT); bmax) → gK(bT; bmax). Also, gK(bc(bT); bmax) does not vanish exactly as bT → 0 but instead approaches a
power of 1/Q.
Up to this point, we have introduced two new parameters, η and C5, in the treatment of the W -term.
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The steps for finding a useful formula for the evolved WNew(qT, Q; η, C5) are as follows. Equation (32) becomes

WNew(qT, Q; η, C5) = Ξ

(

qT
Q

, η

)
∫

d2bT
(2π)2

eiqT·bTW̃NP(bc(bT), Q)W̃ (b∗(bc(bT)), Q) . (47)

Now the definition of W̃ (bT, Q) is unchanged, and only the bT → bc(bT) replacement is new. Therefore instead of
Eq. (35) we simply need

W̃ (bc(bT), Q) = H(µQ, Q)
∑
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∫ 1
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dx̂
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C̃pdf

j/j′ (xA/x̂, b∗(bc(bT)); µ̄
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ln
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[
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′); 1)− ln
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−gA(xA, bc(bT); bmax)− gB(zB, bc(bT); bmax)− 2gK(bc(bT); bmax) ln

(

Q

Q0

)}

. (48)

This is the same as Eq. (35) except that b∗(bc(bT)) and µ̄ = C1/b∗(bc(bT)) are used instead of b∗(bT) and
µb∗ = C1/b∗(bT). Note that gK(bc(bT); bmax) depends on Q through bc, albeit only for bT ! 1/Q. For bT & 1/Q,
gK(bc(bT); bmax) → gK(bT; bmax). Also, gK(bc(bT); bmax) does not vanish exactly as bT → 0 but instead approaches a
power of 1/Q.
Up to this point, we have introduced two new parameters, η and C5, in the treatment of the W -term.

Collins et al. 
arXiv:1605.00671 

see, e.g., Bozzi, Catani, De Florian, Grazzini  
hep-ph/0302104 

http://arxiv.org/abs/hep-ph/0302104
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power of 1/Q.
Up to this point, we have introduced two new parameters, η and C5, in the treatment of the W -term.
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
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Collins et al. 
arXiv:1605.00671 

see, e.g., Bozzi, Catani, De Florian, Grazzini  
hep-ph/0302104 

• The justification is to recover the integrated result (“unitarity constraint”) 

• Modification at low bT is allowed because resummed calculation is anyway 
unreliable there 

http://arxiv.org/abs/hep-ph/0302104
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We consider the sensitivity of our results to the parameterizations adopted for the
collinear quark PDFs. The χ2/d.o.f. varies from its original value 1.51, obtained with the
NLO GJR 2008 parametrization [62], to 1.84 using NLO MSTW 2008 [98], and 1.85 using
NLO CJ12 [99]. In both cases, the agreement with Hermes and Z boson data is not
affected significanlty, the agreement with Compass data becomes slightly worse, and the
agreement with DY data becomes clearly worse.

An extremely important point is the choice of kinematic cuts. Our default choices
are listed in tables 1–4. We consider also more stringent kinematic cuts on SIDIS data:
Q2 > 1.5GeV2 and 0.25 < z < 0.6 instead of Q2 > 1.4GeV2 and 0.2 < z < 0.7, leaving
the other ones unchanged. The number of bins with these cuts reduces from 8059 to 5679
and the χ2/d.o.f. decreases to the value 1.23. In addition, if we replace the constraint
PhT < Min[0.2Q, 0.7Qz] + 0.5GeV with PhT < Min[0.2Q, 0.5Qz] + 0.3GeV, the number
of bins reduces to 3380 and the χ2/d.o.f. decreases further to 0.96. By adopting the even
stricter cut PhT < 0.2Qz, the number of bins drops to only 477, with a χ2/d.o.f. =1.02. We
can conclude that our fit, obtained by fitting data in an extended kinematic region, where
TMD factorization may be questioned, works extremely well also in a narrower region,
where TMD factorization is expected to be under control.

5 Conclusions

In this work we demonstrated for the first time that it is possible to perform a simultaneous
fit of unpolarized TMD PDFs and FFs to data of SIDIS, Drell-Yan and Z boson production
at small transverse momentum collected by different experiments. This constitutes the
first attempt towards a global fit of fa

1 (x, k
2
⊥) and Da→h

1 (z, P 2
⊥) in the context of TMD

factorization and with the implementation of TMD evolution at NLL accuracy.
We extracted unpolarized TMDs using 8059 data points with 11 free parameters using

a replica methodology. We selected data with Q2 > 1.4GeV2 and 0.2 < z < 0.7. We
restricted our fit to the small transverse momentum region, selecting the maximum value
of transverse momentum on the basis of phenomenological considerations (see section 3).
With these choices, we included regions where TMD factorization could be questioned,
but we checked that our results describe very well the regions where TMD factorization is
supposed to hold. The average χ2/d.o.f. is 1.55 ± 0.05 and can be improved up to 1.02
restricting the kinematic cuts, without changing the parameters (see section 4.3). Most of
the discrepancies between experimental data and theory comes from the normalization and
not from the transverse momentum shape.

Our fit is performed assuming that the intrinsic transverse momentum dependence of
TMD PDFs and FFs can be parametrized by a normalized linear combination of a Gaussian
and a weighted Gaussian. We considered that the widths of the Gaussians depend on the
longitudinal momenta. We neglected a possible flavor dependence. For the nonperturbative
component of TMD evolution, we adopted the choice most often used in the literature (see
section 2.3).

We plan to release grids of the parametrizations studied in this work via TMDlib [100]
to facilitate phenomenological studies for present and future experiments.
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Figure 2. In the (⇣, µ) plane we show the lines of force of the TMD evolution field E at different values
of b (in grey, with arrows). The thick continuous gray lines are null-evolution (equipotential) lines. Red
lines are the equipotential lines that define the saddle point. The red line which crosses each panel from
left to right is the special evolution curve where the TMD are defined. The blue dashed lines in each plot
correspond to the final scale choice (µf , ⇣f ) for typical experimental measurements. From left panel to right
panel we have chosen respectively Q = 5, 91 and 150 GeV. Black dashed lines with arrows are path of
evolution implemented in eq. (2.72).

We recall that this expression is same for all (quark) TMDPDFs and TMDFF. Substituting (2.72)
into the definition of structure functions W we obtain,

W f

f1f1
(Q, qT ;x1, x2) = |CV (�Q2, Q2)|2 (2.73)

⇥
Z 1

0
db bJ0(bqT )f1,f h(x1, b)f1,f̄ h

(x2, b)

✓
Q2

⇣Q(b)

◆�2D(b,Q)

,

W f

f1D1
(Q, qT ;xS , zS) = |CV (Q

2, Q2)|2 (2.74)

⇥
Z 1

0
db bJ0(bqT )f1,f h(xS , b)D1,f!h(zS , b)

✓
Q2

⇣Q(b)

◆�2D(b,Q)

.

These are the final expressions used to extract NP-functions.

The simplicity of expressions (2.73,2.74) is also accompanied by a good convergence of the
cross section. In fig. 3 we show the comparison of curves for DY and SIDIS cross-section at typical
energies. In the plot the TMD distributions and the NP part of the evolution are held fixed while
the perturbative orders are changed. The perturbative series converges very well, and the difference
between NNLO and N3LO factorization is of order of percents. This is an additional positive aspect
of the ⇣-prescription, which is due to fact that all perturbative series are evaluated at µ = Q.

2.3.2 Matching of TMD distribution to collinear distributions

The TMD are generic non-perturbative functions that depend on the parton fraction x and the
impact parameter b. A fit of a two-variable function is a hopeless task due to the enormous
parametric freedom. This freedom can be essentially reduced by the matching of a b ! 0 boundary
of a TMD distribution to the corresponding collinear distribution. In the asymptotic limit of small-b

– 15 –

measurements are available for SIDIS data. At the moment, we have not included any data from
HERA multiplicities because they do not accomplish the kinematical requirements for the TMD fac-
torization. Contrary to some observations in the literature [14, 18], we have not found any problem
with the normalization of HERMES and COMPASS data, although the systematic experimental
errors quit precision to the final result.

The data analysis is made with the current theory state-of-art, including all known perturbative
QCD orders, i.e. N3LO for the hard part and the evolution, and NNLO for the collinear matching.
The NNLO and N3LO predictions are very close to each other, which is a good signal indicating
that the perturbative part of the cross-section is saturated. We have also collected all recent
modifications and updates of the TMD factorization approach, such as target-mass corrections,
frame-corrections, and exact evolution solution at large-b. Individually these aspects are subtle,
however, cumulatively, they are sizable. In sec. 2 we have presented a comprehensive collection of
theory expressions used in this work. Let us also mention that the N3LO evolution, as well as a
non-trivial QCD matching for TMDFF (NNLO vs. LO) is used here for the first time.

The scales definition and the evolution/modeling separation is done according to ⇣-prescription.
The ⇣-prescription is equivalent to the popular CSS-scheme since it satisfies the same set of dif-
ferential equations. Nonetheless, this equivalence is strict only within an all-order perturbation
theory and it is numerically violated for any truncated series. The origin for this discrepancy is
well-understood [11] – it comes from spurious contributions in the CSS formalism that vanish in
the exact perturbation theory. At LO and NLO, the numerical value of spurious contributions is
large, but it is tiny at N3LO [11]. Therefore, the ⇣-prescription provides a faster convergence and
the better stability of the perturbative series that is shown in fig. 3. Additionally, but not less
important, the ⇣-prescription grants a strict separation of perturbative and non-perturbative pieces
and thus allows a stronger universality of the phenomenological functions, fig. 22. In particular, the
RAD extracted here can be used in the analysis of the jet-production [89–91]. Preliminary lattice
results are also in qualitative agreement with the RAD in ⇣-prescription [97]. The success of the
present global fit confirms the reliability of the ⇣-prescription.

Many points of the TMD phenomenology are discussed quantitatively for the first time (to
our best knowledge). We critically consider each detail of the factorization that have a disputable
nature, f.i. power corrections to collinear variables. We demonstrated that the inclusion of these
details improves the agreement between theory and the data. A particularly important check made
here for the first time is the test of the limit of the TMD factorization approximation for SIDIS. In
the DY case, the phenomenological limit of TMD factorization is qT . 0.25Q, as it has been shown
in ref. [19]. We have found that SIDIS also obeys this rule. It is important information since it
opens the door for reliable predictions for SIDIS cross-section.

The estimation of the uncertainty for extracted distributions is made by the replica method
that gives a reliable error-propagation of experimental errors. On top of it one should include
the uncertainty of other theoretical ingredients, and in particular the collinear PDF error. We
have checked that the prediction of the TMD factorization is crucially sensitive to the values of
collinear PDFs. It indicates that our extraction has a considerable additional uncertainty due to
the uncertainty of the collinear input. However, we were not able to accurately quantify the size of
this uncertainty band, due to the high computational costs of such analysis. We leave this study
for the future.
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Figure 2. In the (⇣, µ) plane we show the lines of force of the TMD evolution field E at different values
of b (in grey, with arrows). The thick continuous gray lines are null-evolution (equipotential) lines. Red
lines are the equipotential lines that define the saddle point. The red line which crosses each panel from
left to right is the special evolution curve where the TMD are defined. The blue dashed lines in each plot
correspond to the final scale choice (µf , ⇣f ) for typical experimental measurements. From left panel to right
panel we have chosen respectively Q = 5, 91 and 150 GeV. Black dashed lines with arrows are path of
evolution implemented in eq. (2.72).

We recall that this expression is same for all (quark) TMDPDFs and TMDFF. Substituting (2.72)
into the definition of structure functions W we obtain,

W f

f1f1
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⇥
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2, Q2)|2 (2.74)

⇥
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db bJ0(bqT )f1,f h(xS , b)D1,f!h(zS , b)

✓
Q2

⇣Q(b)

◆�2D(b,Q)

.

These are the final expressions used to extract NP-functions.

The simplicity of expressions (2.73,2.74) is also accompanied by a good convergence of the
cross section. In fig. 3 we show the comparison of curves for DY and SIDIS cross-section at typical
energies. In the plot the TMD distributions and the NP part of the evolution are held fixed while
the perturbative orders are changed. The perturbative series converges very well, and the difference
between NNLO and N3LO factorization is of order of percents. This is an additional positive aspect
of the ⇣-prescription, which is due to fact that all perturbative series are evaluated at µ = Q.

2.3.2 Matching of TMD distribution to collinear distributions

The TMD are generic non-perturbative functions that depend on the parton fraction x and the
impact parameter b. A fit of a two-variable function is a hopeless task due to the enormous
parametric freedom. This freedom can be essentially reduced by the matching of a b ! 0 boundary
of a TMD distribution to the corresponding collinear distribution. In the asymptotic limit of small-b
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measurements are available for SIDIS data. At the moment, we have not included any data from
HERA multiplicities because they do not accomplish the kinematical requirements for the TMD fac-
torization. Contrary to some observations in the literature [14, 18], we have not found any problem
with the normalization of HERMES and COMPASS data, although the systematic experimental
errors quit precision to the final result.

The data analysis is made with the current theory state-of-art, including all known perturbative
QCD orders, i.e. N3LO for the hard part and the evolution, and NNLO for the collinear matching.
The NNLO and N3LO predictions are very close to each other, which is a good signal indicating
that the perturbative part of the cross-section is saturated. We have also collected all recent
modifications and updates of the TMD factorization approach, such as target-mass corrections,
frame-corrections, and exact evolution solution at large-b. Individually these aspects are subtle,
however, cumulatively, they are sizable. In sec. 2 we have presented a comprehensive collection of
theory expressions used in this work. Let us also mention that the N3LO evolution, as well as a
non-trivial QCD matching for TMDFF (NNLO vs. LO) is used here for the first time.

The scales definition and the evolution/modeling separation is done according to ⇣-prescription.
The ⇣-prescription is equivalent to the popular CSS-scheme since it satisfies the same set of dif-
ferential equations. Nonetheless, this equivalence is strict only within an all-order perturbation
theory and it is numerically violated for any truncated series. The origin for this discrepancy is
well-understood [11] – it comes from spurious contributions in the CSS formalism that vanish in
the exact perturbation theory. At LO and NLO, the numerical value of spurious contributions is
large, but it is tiny at N3LO [11]. Therefore, the ⇣-prescription provides a faster convergence and
the better stability of the perturbative series that is shown in fig. 3. Additionally, but not less
important, the ⇣-prescription grants a strict separation of perturbative and non-perturbative pieces
and thus allows a stronger universality of the phenomenological functions, fig. 22. In particular, the
RAD extracted here can be used in the analysis of the jet-production [89–91]. Preliminary lattice
results are also in qualitative agreement with the RAD in ⇣-prescription [97]. The success of the
present global fit confirms the reliability of the ⇣-prescription.

Many points of the TMD phenomenology are discussed quantitatively for the first time (to
our best knowledge). We critically consider each detail of the factorization that have a disputable
nature, f.i. power corrections to collinear variables. We demonstrated that the inclusion of these
details improves the agreement between theory and the data. A particularly important check made
here for the first time is the test of the limit of the TMD factorization approximation for SIDIS. In
the DY case, the phenomenological limit of TMD factorization is qT . 0.25Q, as it has been shown
in ref. [19]. We have found that SIDIS also obeys this rule. It is important information since it
opens the door for reliable predictions for SIDIS cross-section.

The estimation of the uncertainty for extracted distributions is made by the replica method
that gives a reliable error-propagation of experimental errors. On top of it one should include
the uncertainty of other theoretical ingredients, and in particular the collinear PDF error. We
have checked that the prediction of the TMD factorization is crucially sensitive to the values of
collinear PDFs. It indicates that our extraction has a considerable additional uncertainty due to
the uncertainty of the collinear input. However, we were not able to accurately quantify the size of
this uncertainty band, due to the high computational costs of such analysis. We leave this study
for the future.
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