EXPLORING THE INTERIOR OF THE NUCLEON WITH TRANSVERSE MOMENTUM DEPENDENT PARTON DISTRIBUTIONS (TMDS)

Alessandro Bacchetta

THANKS TO HADRONIC PHYSICS GROUP IN PAVIA

Filippo Delcarro

Cristian Pisano

Chiara Bissolotti

Miguel G. Echevarria

Marco Radici

Giuseppe Bozzi

Barbara Pasquini

Simone Rodini

Francesco Celiberto

Fulvio Piacenza

WHY IS IT INTERESTING TO MAP THE NUCLEON?

WHY IS IT INTERESTING TO MAP THE NUCLEON?

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{q} \bar{\psi}_{q}(i \not \partial-g \not A+m) \psi_{q}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

Check predictions

WHY IS IT INTERESTING TO MAP THE NUCLEON?

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{q} \bar{\psi}_{q}(i \not \partial-g \not A+m) \psi_{q}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

Make predictions

Check predictions

Parton Distribution Functions

$f(x)$

1 dimensional

STANDARD PARTON DISTRIBUTION FUNCTIONS

> Standard collinear PDFs describe the distribution of partons in one dimension in momentum space. They are extracted through global fits

UNPOLARIZED PDF MOMENTS AND LATTICE OCD

PDFLattice White Paper, arXiv:1711.07916

Fair agreement, but not perfect

FULL UNPOLARIZED PDF AND LATIICE QCD

Alexandrou, Cichy, Constantinou, Hadjiyiannakou, Jansen, Scapellato, Steffens, arXiv:1902.00587

Transverse-Momentum Distributions

$f\left(x, \vec{k}_{T}\right)$
3 dimensional !

TRANSVERSE MOMENTUM DISTRIBUTIONS

TMDs describe the distribution of partons in three dimensions in momentum space. They also have to be extracted through global fits.

TRANSVERSE MOMENTUM DISTRIBUTIONS

TMDs describe the distribution of partons in three dimensions in momentum space. They also have to be extracted through global fits.

UNPOLARISED QUARK TMDS

UNPOLARISED QUARK TMDS

see talk by M. Radici for polarized ones

FACTORIZATION AND UNIVERSALITY

FACTORIZATION AND UNIVERSALITY

Drell-Yan

FACTORIZATION AND UNIVERSALITY

Drell-Yan

$\mathrm{e}^{-} \mathrm{e}^{+}$to pions

FACTORIZATION AND UNIVERSALITY

$\mathrm{e}^{-} \mathrm{e}^{+}$to pions

FACTORIZATION AND UNIVERSALITY

$\mathrm{e}^{-} \mathrm{e}^{+}$to pions

FACTORIZATION AND UNIVERSALITY

FACTORIZATION AND UNIVERSALITY

$\mathrm{e}^{-} \mathrm{e}^{+}$to pions

FACTORIZATION AND UNIVERSALITY

$\mathrm{e}^{-} \mathrm{e}^{+}$to pions

p-p to pions

FACTORIZATION AND UNIVERSALITY

FACTORIZATION AND UNIVERSALITY

$\mathrm{p}-\mathrm{p}$ to pions
Buffing, Kang, Lee, Liu, arXiv:1812.07549

FACTORIZATION AND UNIVERSALITY

TMDS IN DRELL-YAN PROCESSES

TMDS IN DRELL-YAN PROCESSES

$$
F_{U U}^{1}\left(x_{A}, x_{B}, \boldsymbol{q}_{T}^{2}, Q^{2}\right)
$$

$\approx \sum_{q} \mathcal{H}_{U U}^{1 q}\left(Q^{2}, \mu^{2}\right) \int d^{2} \boldsymbol{k}_{\perp A} d^{2} \boldsymbol{k}_{\perp B} f_{1}^{q}\left(x_{A}, \boldsymbol{k}_{\perp A}^{2} ; \mu^{2}\right) f_{1}^{\bar{q}}\left(x_{B}, \boldsymbol{k}_{\perp B}^{2} ; \mu^{2}\right) \delta^{(2)}\left(\boldsymbol{k}_{\perp A}-\boldsymbol{q}_{T}+\boldsymbol{k}_{\perp B}\right)$

At small transverse momentum, the dominant part is given by TMDs.

TMDS IN DRELL-YAN PROCESSES

$$
F_{U U}^{1}\left(x_{A}, x_{B}, \boldsymbol{q}_{T}^{2}, Q^{2}\right)
$$

$\approx \sum_{q} \mathcal{H}_{U U}^{1 q}\left(Q^{2}, \mu^{2}\right) \int d^{2} \boldsymbol{k}_{\perp A} d^{2} \boldsymbol{k}_{\perp B} f_{1}^{q}\left(x_{A}, \boldsymbol{k}_{\perp A}^{2} ; \mu^{2}\right) f_{1}^{\bar{q}}\left(x_{B}, \boldsymbol{k}_{\perp B}^{2} ; \mu^{2}\right) \delta^{(2)}\left(\boldsymbol{k}_{\perp A}-\boldsymbol{q}_{T}+\boldsymbol{k}_{\perp B}\right)$
$=\sum_{q} \mathcal{H}_{U U}^{1 q}\left(Q^{2}, \mu^{2}\right) \int d b_{T} b_{T} J_{0}\left(b_{T}\left|\boldsymbol{q}_{T}\right|\right) \hat{f}_{1}^{q}\left(x_{A}, b_{T}^{2} ; \mu^{2}\right) \hat{f}_{1}^{\bar{q}}\left(x_{B}, b_{T}^{2} ; \mu^{2}\right)$
At small transverse momentum, the dominant part is given by TMDs.
The analysis of is usually done in Fourier-transformed space

TMDS IN DRELL-YAN PROCESSES

$$
F_{U U}^{1}\left(x_{A}, x_{B}, \boldsymbol{q}_{T}^{2}, Q^{2}\right)
$$

$\approx \sum_{q} \mathcal{H}_{U U}^{1 q}\left(Q^{2}, \mu^{2}\right) \int d^{2} \boldsymbol{k}_{\perp A} d^{2} \boldsymbol{k}_{\perp B} f_{1}^{q}\left(x_{A}, \boldsymbol{k}_{\perp A}^{2} ; \mu^{2}\right) f_{1}^{\bar{q}}\left(x_{B}, \boldsymbol{k}_{\perp B}^{2} ; \mu^{2}\right) \delta^{(2)}\left(\boldsymbol{k}_{\perp A}-\boldsymbol{q}_{T}+\boldsymbol{k}_{\perp B}\right)$
$=\sum_{q} \mathcal{H}_{U U}^{1 q}\left(Q^{2}, \mu^{2}\right) \int d b_{T} b_{T} J_{0}\left(b_{T}\left|\boldsymbol{q}_{T}\right|\right) \hat{f}_{1}^{q}\left(x_{A}, b_{T}^{2} ; \mu^{2}\right) \hat{f}_{1}^{\bar{q}}\left(x_{B}, b_{T}^{2} ; \mu^{2}\right)$
At small transverse momentum, the dominant part is given by TMDs.
The analysis of is usually done in Fourier-transformed space
TMDs formally depend on two scales, but usually they are set to be equal.

TMDS IN SEMI-INCLUSIVE DIS

DIFFERENT CONTRIBUTIONS TO TRANSVERSE MOMENTUM

"intrinsic"
transverse
momentum

DIFFERENT CONTRIBUTIONS TO TRANSVERSE MOMENTUM

DIFFERENT CONTRIBUTIONS TO TRANSVERSE MOMENTUM

TMD FACTORIZATION

$$
\hat{f}_{1}^{q}\left(x, b_{T} ; \mu^{2}\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu^{2}\right)
$$

see, e.g., Rogers, Aybat, PRD 83 (11),
Collins, "Foundations of Perturbative QCD" (11)
other possible schemes, e.g.,
Laenen, Sterman, Vogelsang, PRL 84 (00)
Bozzi, Catani, De Florian, Grazzini, NPB737 (06)
Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (1®)

TMD FACTORIZATION

$$
\begin{aligned}
& \hat{f}_{1}^{q}\left(x, b_{T} ; \mu^{2}\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu^{2}\right) \\
& \hat{f}_{1}^{q}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(C_{q i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{q}\left(x, b_{T}\right)
\end{aligned}
$$

see, e.g., Rogers, Aybat, PRD 83 (11),
Collins, "Foundations of Perturbative QCD"
other possible schemes, e.g.,
Laenen, Sterman, Vogelsang, PRL 84 (00)
Bozzi, Catani, De Florian, Grazzini, NPB737 (06)
Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (1®)

TMD FACTORIZATION

$$
\begin{aligned}
& \hat{f}_{1}^{q}\left(x, b_{T} ; \mu^{2}\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu^{2}\right) \\
& \hat{f}_{1}^{q}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(C_{q i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{q}\left(x, b_{T}\right) \\
& \mu_{b}=\frac{2 e^{-\gamma_{E}}}{b_{*}}
\end{aligned}
$$

see, e.g., Rogers, Aybat, PRD 83 (11),
Collins, "Foundations of Perturbative QCD"
other possible schemes, e.g.,
Laenen, Sterman, Vogelsang, PRL 84 (00)
Bozzi, Catani, De Florian, Grazzini, NPB737 (06)
Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (TB)

TMD FACTORIZATION

$$
\begin{aligned}
& \hat{f}_{1}^{q}\left(x, b_{T} ; \mu^{2}\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu^{2}\right) \\
& \hat{f}_{1}^{q}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(C_{q i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{q}\left(x, b_{T}\right) \\
& \mu_{b}=\frac{2 e^{-\gamma_{E}}}{b_{*}}
\end{aligned}
$$

see, e.g., Rogers, Aybat, PRD 83 (11),
Collins, "Foundations of Perturbative QCD" (11)
other possible schemes, e.g.,
Laenen, Sterman, Vogelsang, PRL 84 (00) Bozzi, Catani, De Florian, Grazzini, NPB737 (06) Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (1®)

LOGARITHMIC ACCURACY

Sudakov form factor

$$
\mathrm{LL} \quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)
$$

LOGARITHMIC ACCURACY

Sudakov form factor

$\mathrm{LL} \quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)$
$\mathrm{NLL} \quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right), \quad \alpha_{S}^{n} \ln ^{2 n-1}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)$

LOGARITHMIC ACCURACY

Sudakov form factor

$$
\alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)
$$

C^{0}

NLL $\quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right), \quad \alpha_{S}^{n} \ln ^{2 n-1}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)$
C^{0}

LOGARITHMIC ACCURACY

Sudakov form factor

$\mathrm{LL} \quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)$
NLL $\quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right), \quad \alpha_{S}^{n} \ln ^{2 n-1}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)$
NLL' $\quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right), \quad \alpha_{S}^{n} \ln ^{2 n-1}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right) \quad\left(C^{0}+\alpha_{S} C^{1}\right)$

matching coeff.

C^{0}
C^{0}

$$
\alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right), \quad \alpha_{S}^{n} \ln ^{2 n-1}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)
$$

$$
\left(C^{0}+\alpha_{S} C^{1}\right)
$$

LOGARITHMIC ACCURACY

Sudakov form factor

$\mathrm{LL} \quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)$
NLL $\quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right), \quad \alpha_{S}^{n} \ln ^{2 n-1}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)$
NLL' $\quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right), \quad \alpha_{S}^{n} \ln ^{2 n-1}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right) \quad\left(C^{0}+\alpha_{S} C^{1}\right)$
the difference between the two is NNLL

matching coeff.

C^{0}
C^{0}

$$
\alpha_{S}^{n} \ln ^{2 n-2}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)
$$

COMPARISON OF DIFFERENT ORDERS

V. Bertone's talk at LHC EW WG General Meeting, Dec 2019 https://indico.cern.ch/event/849342/

RECENT TMD FITS OF UNPOLARIZED DATA

	Framework	HERMES	COMPASS	DY	Z production	N of points	$\chi^{2} / N_{\text {points }}$
Pavia 2017 arXiv:1703.10157	NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059	1.55
SV 2017 arXiv:1706.01473	NNLL'	x	x	\checkmark	\checkmark	309	1.23
$\begin{gathered} \text { BSV } 2019 \\ \text { arXiv:1902.08474 } \end{gathered}$	NNLL'	x	x	\checkmark	\checkmark	457	1.17
SV 2019 arXiv:1912.06532	NNLL'	\checkmark	\checkmark	\checkmark	\checkmark	1039	1.06
Pavia 2019 arXiv:1912.07550	N3LL	x	x	\checkmark	\checkmark	353	1.02

x-Q2 COVERAGE

x-Q2 COVERAGE

Scimemi, Vladimirov, arXiv:1912.06532

$x_{1} x_{2}$ COVERAGE

$x_{1} x_{2}$ COVERAGE

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

THE PAVIA17 EXTRACTION

SIDIS

THE PAVIA17 EXTRACTION

Drell-Yan黄 Fermilab

THE PAVIA17 EXTRACTION

Z production

THE PAVIA17 EXTRACTION

Drell-Yan茷Fermilab

Number of data points: 8059 Global $\mathrm{X}^{2 / d o f}=1.55$

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

THE PAVIA17 EXTRACTION

The TMD "eight-thousander" fit

The TMD "eight-thousander" fit

Pavia 2017

PV17 - RESULTING TMDS

expression in bт space
$\hat{f}_{\mathrm{NP}}\left(x, b_{T}\right)=e^{-g_{1}(x) \frac{b_{T}^{2}}{4}}\left(1-\frac{\lambda g_{1}^{2}(x)}{1+\lambda g_{1}(x)} \frac{b_{T}^{2}}{4}\right)$

PV17 - RESULTING TMDS

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157
expression in bт space
$\hat{f}_{\mathrm{NP}}\left(x, b_{T}\right)=e^{-g_{1}(x) \frac{b_{T}^{2}}{4}}\left(1-\frac{\lambda g_{1}^{2}(x)}{1+\lambda g_{1}(x)} \frac{b_{T}^{2}}{4}\right)$

PV17 - RESULTING TMDS

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157
expression in bт space
$\hat{f}_{\mathrm{NP}}\left(x, b_{T}\right)=e^{-g_{1}(x) \frac{b_{T}^{2}}{4}}\left(1-\frac{\lambda g_{1}^{2}(x)}{1+\lambda g_{1}(x)} \frac{b_{T}^{2}}{4}\right)$

$$
\text { plot in } k_{\perp} \text { space }
$$

PV17 - RESULTING TMDS

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157
expression in bт space
$\hat{f}_{\mathrm{NP}}\left(x, b_{T}\right)=e^{-g_{1}(x) \frac{b_{\frac{2}{2}}^{4}}{4}}\left(1-\frac{\lambda g_{1}^{2}(x)}{1+\lambda g_{1}(x)} \frac{b_{T}^{2}}{4}\right)$

- Guassian + weighted Gaussian

$$
\text { plot in } k_{\perp} \text { space }
$$

PV17 - RESULTING TMDS

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157
expression in bт space
$\hat{f}_{\mathrm{NP}}\left(x, b_{T}\right)=e^{-g_{1}(x) \frac{b_{\frac{2}{2}}^{4}}{4}}\left(1-\frac{\lambda g_{1}^{2}(x)}{1+\lambda g_{1}(x)} \frac{b_{T}^{2}}{4}\right)$

- Guassian + weighted Gaussian
- nontrivial x dependence

$$
\text { plot in } k_{\perp} \text { space }
$$

Repl. $105\left(Q^{2}=1 \mathrm{GeV}^{2}\right)$

PV17 - RESULTING TMDS

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157
expression in bт space
$\hat{f}_{\mathrm{NP}}\left(x, b_{T}\right)=e^{-g_{1}(x) \frac{b_{\frac{2}{2}}^{4}}{4}}\left(1-\frac{\lambda g_{1}^{2}(x)}{1+\lambda g_{1}(x)} \frac{b_{T}^{2}}{4}\right)$

- Guassian + weighted Gaussian
- nontrivial x dependence
- no flavor dependence

$$
\text { plot in } k_{\perp} \text { space }
$$

PV17 - RESULTING TMDS

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157
expression in bт space
$\hat{f}_{\mathrm{NP}}\left(x, b_{T}\right)=e^{-g_{1}(x) \frac{b_{\frac{2}{2}}^{4}}{4}}\left(1-\frac{\lambda g_{1}^{2}(x)}{1+\lambda g_{1}(x)} \frac{b_{T}^{2}}{4}\right)$

- Guassian + weighted Gaussian
- nontrivial x dependence
- no flavor dependence
$g_{K}\left(b_{T}\right)=-\frac{g_{2}}{2} b_{T}^{2} \quad$ Guassian

$$
\text { plot in } k_{\perp} \text { space }
$$

PV17 - RESULTING TMDS

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157
expression in bт space
$\hat{f}_{\mathrm{NP}}\left(x, b_{T}\right)=e^{-g_{1}(x) \frac{b_{\frac{\pi}{2}}^{4}}{4}}\left(1-\frac{\lambda g_{1}^{2}(x)}{1+\lambda g_{1}(x)} \frac{b_{T}^{2}}{4}\right)$

- Guassian + weighted Gaussian
- nontrivial x dependence
- no flavor dependence

$$
g_{K}\left(b_{T}\right)=-\frac{g_{2}}{2} b_{T}^{2} \quad \text { Guassian }
$$

$$
\hat{D}_{\mathrm{NP}}\left(z, b_{T}\right)=\frac{g_{3}(z) e^{-g_{3}(z) \frac{b_{\tau}^{2}}{4 z^{2}}}+\left(\lambda_{F} / z^{2}\right) g_{4}^{2}(z)\left(1-g_{4}(z) \frac{b_{\tau}^{2}}{4 z^{2}}\right) e^{-g_{4}^{2}(z) \frac{b_{\tau}^{2}}{4 z^{2}}}}{z^{2}\left(g_{3}(z)+\left(\lambda_{F} / z^{2}\right) g_{4}^{2}(z)\right)}
$$

TMD Frag. Func.

PV17 - RESULTING TMDS

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157
expression in bт space
$\hat{f}_{\mathrm{NP}}\left(x, b_{T}\right)=e^{-g_{1}(x) \frac{b_{\frac{\pi}{2}}^{4}}{4}}\left(1-\frac{\lambda g_{1}^{2}(x)}{1+\lambda g_{1}(x)} \frac{b_{T}^{2}}{4}\right)$

- Guassian + weighted Gaussian
- nontrivial x dependence
- no flavor dependence

$$
g_{K}\left(b_{T}\right)=-\frac{g_{2}}{2} b_{T}^{2} \quad \text { Guassian }
$$

$$
\hat{D}_{\mathrm{NP}}\left(z, b_{T}\right)=\frac{g_{3}(z) e^{-g_{3}(z) \frac{b_{7}^{2}}{4 z^{2}}}+\left(\lambda_{F} / z^{2}\right) g_{4}^{2}(z)\left(1-g_{4}(z) \frac{b_{T}^{2}}{4 z^{2}}\right) e^{-g_{4}^{2}\left(z \frac{b_{T}^{2}}{4 z^{2}}\right.}}{z^{2}\left(g_{3}(z)+\left(\lambda_{F} / z^{2}\right) g_{4}^{2}(z)\right)} \quad \text { TMD Frag. Func. }
$$

11 free parameters

THE PAVIA19 EXTRACTION

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

THE PAVIA19 EXTRACTION

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

THE PAVIA19 EXTRACTION

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

Data selection: $q_{T} / \mathrm{Q}<0.2$

Number of data points: 353

The TMD "Varzi" fit

PV19 - DATA COMPARISION

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

Data selection: $q_{T} / \mathrm{Q}<0.2$

Number of data points: 353

PV19 - DATA COMPARISION

PV19 - DATA COMPARISION

PV19 - RESULTING TMDS

expression in b_{T} space

$$
\begin{aligned}
f_{\mathrm{NP}}\left(x, b_{T}, \zeta\right) & =\left[\frac{1-\lambda}{1+g_{1}(x) \frac{b_{T}^{2}}{4}}+\lambda \exp \left(-g_{1 B}(x) \frac{b_{T}^{2}}{4}\right)\right] \\
& \times \exp \left[-\left(g_{2}+g_{2 B} b_{T}^{2}\right) \ln \left(\frac{\zeta}{Q_{0}^{2}}\right) \frac{b_{T}^{2}}{4}\right]
\end{aligned}
$$

PV19 - RESULTING TMDS

expression in bт space

$$
\begin{aligned}
f_{\mathrm{NP}}\left(x, b_{T}, \zeta\right) & =\left[\frac{1-\lambda}{1+g_{1}(x) \frac{b_{T}^{2}}{4}}+\lambda \exp \left(-g_{1 B}(x) \frac{b_{T}^{2}}{4}\right)\right] \\
& \times \exp \left[-\left(g_{2}+g_{2 B} b_{T}^{2}\right) \ln \left(\frac{\zeta}{Q_{0}^{2}}\right) \frac{b_{T}^{2}}{4}\right]
\end{aligned}
$$

plot in k_{\perp} space

PV19 - RESULTING TMDS

expression in bт space

$$
\begin{aligned}
f_{\mathrm{NP}}\left(x, b_{T}, \zeta\right) & =\left[\frac{1-\lambda}{1+g_{1}(x) \frac{b_{T}^{2}}{4}}+\lambda \exp \left(-g_{1 B}(x) \frac{b_{T}^{2}}{4}\right)\right] \\
& \times \exp \left[-\left(g_{2}+g_{2 B} b_{T}^{2}\right) \ln \left(\frac{\zeta}{Q_{0}^{2}}\right) \frac{b_{T}^{2}}{4}\right]
\end{aligned}
$$

- q-Guassian + Gaussian
plot in k_{\perp} space

PV19 - RESULTING TMDS

expression in bт space

$$
\begin{aligned}
f_{\mathrm{NP}}\left(x, b_{T}, \zeta\right) & =\left[\frac{1-\lambda}{1+g_{1}(x) \frac{b_{T}^{2}}{4}}+\lambda \exp \left(-g_{1 B}(x) \frac{b_{T}^{2}}{4}\right)\right] \\
& \times \exp \left[-\left(g_{2}+g_{2 B} b_{T}^{2}\right) \ln \left(\frac{\zeta}{Q_{0}^{2}}\right) \frac{b_{T}^{2}}{4}\right]
\end{aligned}
$$

- q-Guassian + Gaussian
- nontrivial x dependence
plot in k_{\perp} space

PV19 - RESULTING TMDS

expression in bт space

$$
\begin{aligned}
f_{\mathrm{NP}}\left(x, b_{T}, \zeta\right) & =\left[\frac{1-\lambda}{1+g_{1}(x) \frac{b_{T}^{2}}{4}}+\lambda \exp \left(-g_{1 B}(x) \frac{b_{T}^{2}}{4}\right)\right] \\
& \times \exp \left[-\left(g_{2}+g_{2 B} b_{T}^{2}\right) \ln \left(\frac{\zeta}{Q_{0}^{2}}\right) \frac{b_{T}^{2}}{4}\right]
\end{aligned}
$$

- q-Guassian + Gaussian
- nontrivial x dependence
- no flavor dependence
plot in k_{\perp} space

PV19 - RESULTING TMDS

expression in b_{T} space

plot in k_{\perp} space

$$
\begin{aligned}
f_{\mathrm{NP}}\left(x, b_{T}, \zeta\right) & =\left[\frac{1-\lambda}{1+g_{1}(x) \frac{b_{T}^{2}}{4}}+\lambda \exp \left(-g_{1 B}(x) \frac{b_{T}^{2}}{4}\right)\right] \\
& \times \exp \left[-\left(g_{2}+g_{2 B} b_{T}^{2}\right) \ln \left(\frac{\zeta}{Q_{0}^{2}}\right) \frac{b_{T}^{2}}{4}\right]
\end{aligned}
$$

- no flavor dependence
- non-Gaussian nonperturbative TMD evolution

PV19 - RESULTING TMDS

expression in b_{T} space

$$
\text { plot in } k_{\perp} \text { space }
$$

$$
\begin{aligned}
f_{\mathrm{NP}}\left(x, b_{T}, \zeta\right) & =\left[\frac{1-\lambda}{1+g_{1}(x) \frac{b_{T}^{2}}{4}}+\lambda \exp \left(-g_{1 B}(x) \frac{b_{T}^{2}}{4}\right)\right] \\
& \times \exp \left[-\left(g_{2}+g_{2 B} b_{T}^{2}\right) \ln \left(\frac{\zeta}{Q_{0}^{2}}\right) \frac{b_{T}^{2}}{4}\right]
\end{aligned}
$$

- q-Guassian + Gaussian
- nontrivial x dependence
- no flavor dependence

- non-Gaussian nonperturbative TMD evolution

9 free parameters

PROBLEMS WITH SIDIS NORMALIZATION

PROBLEMS WITH SIDIS NORMALIZATION

Comparing the PV17 extraction with the new COMPASS data, without normalization factors, at NLL the agreement is very good

from F. Piacenza's PhD thesis

PROBLEMS WITH SIDIS NORMALIZATION

Comparing the PV17 extraction with the new COMPASS data, without normalization factors, at NLL the agreement is very good

Going to NLL' or NNLL the situation dramatically worsens!

from F. Piacenza's PhD thesis

PROBLEMS WITH SIDIS NORMALIZATION

talk by O. Gonzalez at DIS2019

Torino's group also confirmed that large normalisation factors have to be introduced to describe COMPASS data

PROBLEMS WITH SIDIS NORMALIZATION

from F. Piacenza's PhD thesis

Black dots: large normalisation factors
required to fit COMPASS multiplicities at NLL'

PROBLEMS WITH SIDIS NORMALIZATION

from F. Piacenza's PhD thesis

Black dots: large normalisation factors required to fit COMPASS multiplicities at NLL'

PROBLEMS WITH SIDIS NORMALIZATION

from F. Piacenza's PhD thesis

Black dots: large normalisation factors required to fit COMPASS multiplicities at NLL'

Red dots: ratio between collinear formula and integral of TMD part at order α_{s}

PROBLEMS WITH SIDIS NORMALIZATION

from F. Piacenza's PhD thesis

Black dots: large normalisation factors required to fit COMPASS multiplicities at NLL'

Red dots: ratio between collinear formula and integral of TMD part at order α_{s}

PROBLEMS WITH SIDIS NORMALIZATION

from F. Piacenza's PhD thesis

Black dots: large normalisation factors required to fit COMPASS multiplicities at NLL'

Black and red dots are similar

Red dots: ratio between collinear formula and integral of TMD part at order α_{s}

PROBLEMS WITH SIDIS NORMALIZATION

from F. Piacenza's PhD thesis

Black dots: large normalisation factors required to fit COMPASS multiplicities at NLL'

Black and red dots are similar GOOD?

Red dots: ratio between collinear formula and integral of TMD part at order α_{s}

THE SCIMEMI-VLADIMIROV 19 EXTRACTION

Scimemi, Vladimirov, arXiv:1912.06532

THE SCIMEMI-VLADIMIROV 19 EXTRACTION

Scimemi, Vladimirov, arXiv:1912.06532

THE SCIMEMI-VLADIMIROV 19 EXTRACTION

Scimemi, Vladimirov, arXiv:1912.06532

曼Fermilab

$\begin{aligned} & \bullet 0.2<z<0.3 \\ & \text { offset } \\ & \text { e }\end{aligned}$
offset $=+0.09$
$\bullet 0.3<z<0.4$
offset $=+0.0$
$\bullet 0.4<z<0$.
offset $=+0.05$
$\cdot 0.6<z<0.8$
$\begin{aligned} \bullet 0.6 & <z<0.8 \\ \text { offset } & =+0 .\end{aligned}$
Data selection:

$$
\mathrm{q}_{\mathrm{T}}=\mathrm{P}_{\mathrm{h} \perp} / \mathrm{z}<0.25 \mathrm{Q}
$$

Number of data points: 1039
Global $\mathrm{X}^{2 / d o f}=1.06$

q_{T}

THE SCIMEMI-VLADIMIROV 19 EXTRACTION

Scimemi, Vladimirov, arXiv:1912.06532

芉Fermilab

$\bullet 0.2<z<0.3$
offset $=+0.09$
offset $=+0.09$
$\bullet 0.3<z<0.4$
offset $=+0.07$
$\bullet 0.4<z<0.6$
offset $=+0.05$
$\bullet 0.6<z<0.8$
$-0.6<z<0.8$
offset $=+0$.
Data selection:

$$
\mathrm{q}_{\mathrm{T}}=\mathrm{P}_{\mathrm{h}_{\perp}} / \mathrm{z}<0.25 \mathrm{Q}
$$

Number of data points: 1039
Global $\mathrm{X}^{2 / d o f}=1.06$

SV19: first SIDIS+DY fit at NNLL, without normalization problems!

SV19 - RESULTING TMDS

expression in bт space

$$
f_{N P}(x, b)=\exp \left(-\frac{\lambda_{1}(1-x)+\lambda_{2} x+x(1-x) \lambda_{5}}{\sqrt{1+\lambda_{3} x^{\lambda_{4}} \boldsymbol{b}^{2}}} \boldsymbol{b}^{2}\right)
$$

SV19 - RESULTING TMDS

expression in bт space

$$
f_{N P}(x, b)=\exp \left(-\frac{\lambda_{1}(1-x)+\lambda_{2} x+x(1-x) \lambda_{5}}{\sqrt{1+\lambda_{3} x^{\lambda} \boldsymbol{b}^{2}}} \boldsymbol{b}^{2}\right)
$$

plot in bт space

SV19 - RESULTING TMDS

expression in bт space plot in bт space

$$
f_{N P}(x, b)=\exp \left(-\frac{\lambda_{1}(1-x)+\lambda_{2} x+x(1-x) \lambda_{5}}{\sqrt{1+\lambda_{3} x^{\lambda} \boldsymbol{b}^{2}}} \boldsymbol{b}^{2}\right)
$$

- Guassian at low b_{T}, exponential at high b_{T}

SV19 - RESULTING TMDS

expression in b_{T} space

$$
f_{N P}(x, b)=\exp \left(-\frac{\lambda_{1}(1-x)+\lambda_{2} x+x(1-x) \lambda_{5}}{\sqrt{1+\lambda_{3} x^{\lambda_{4}} \boldsymbol{b}^{2}}} \boldsymbol{b}^{2}\right)
$$

- Guassian at low $\mathrm{b}_{т}$, exponential at high $\mathrm{b}_{\mathbf{T}}$
- nontrivial x dependence
plot in bт space

SV19 - RESULTING TMDS

expression in bт space

$$
f_{N P}(x, b)=\exp \left(-\frac{\lambda_{1}(1-x)+\lambda_{2} x+x(1-x) \lambda_{5}}{\sqrt{1+\lambda_{3} x^{\lambda_{4}} \boldsymbol{b}^{2}}} \boldsymbol{b}^{2}\right)
$$

- Guassian at low $\mathrm{b}_{т}$, exponential at high $\mathrm{b}_{\mathbf{T}}$
- nontrivial x dependence
- no flavor dependence
plot in bт space

SV19 - RESULTING TMDS

expression in bт space
plot in bT space

$$
f_{N P}(x, b)=\exp \left(-\frac{\lambda_{1}(1-x)+\lambda_{2} x+x(1-x) \lambda_{5}}{\sqrt{1+\lambda_{3} x^{\lambda_{4}} \boldsymbol{b}^{2}}} \boldsymbol{b}^{2}\right)
$$

- Guassian at low b_{T}, exponential at high b_{T}
- nontrivial x dependence
- no flavor dependence
- Rapidity anomalous dimension (related to nonperturbative TMD evolution) $\mathcal{D}(\mu, b)=\mathcal{D}_{\text {resum }}\left(\mu, b^{*}(b)\right)+c_{0} b b^{*}(b)$,

SV19 - RESULTING TMDS

expression in bт space
plot in bт space

$$
f_{N P}(x, b)=\exp \left(-\frac{\lambda_{1}(1-x)+\lambda_{2} x+x(1-x) \lambda_{5}}{\sqrt{1+\lambda_{3} x^{\lambda_{4}} \boldsymbol{b}^{2}}} \boldsymbol{b}^{2}\right)
$$

- Guassian at low bт, exponential at high bт
- nontrivial x dependence
- no flavor dependence
- Rapidity anomalous dimension (related to nonperturbative TMD evolution) $\mathcal{D}(\mu, b)=\mathcal{D}_{\text {resum }}\left(\mu, b^{*}(b)\right)+c_{0} b b^{*}(b)$,

$$
D_{N P}(x, b)=\exp \left(-\frac{\eta_{1} z+\eta_{2}(1-z)}{\sqrt{1+\eta_{3}(\boldsymbol{b} / z)^{2}}} \frac{\boldsymbol{b}^{2}}{z^{2}}\right)\left(1+\eta_{4} \frac{\boldsymbol{b}^{2}}{z^{2}}\right)
$$

TMD Frag. Func.

SV19 - RESULTING TMDS

expression in bт space
plot in bт space

$$
f_{N P}(x, b)=\exp \left(-\frac{\lambda_{1}(1-x)+\lambda_{2} x+x(1-x) \lambda_{5}}{\sqrt{1+\lambda_{3} x^{\lambda_{4}} \boldsymbol{b}^{2}}} \boldsymbol{b}^{2}\right)
$$

- Guassian at low b_{T}, exponential at high b_{T}
- nontrivial x dependence
- no flavor dependence
- Rapidity anomalous dimension (related to nonperturbative TMD evolution) $\mathcal{D}(\mu, b)=\mathcal{D}_{\text {resum }}\left(\mu, b^{*}(b)\right)+c_{0} b b^{*}(b)$,

$$
D_{N P}(x, b)=\exp \left(-\frac{\eta_{1} z+\eta_{2}(1-z)}{\sqrt{1+\eta_{3}(\boldsymbol{b} / z)^{2}}} \frac{\boldsymbol{b}^{2}}{z^{2}}\right)\left(1+\eta_{4} \frac{\boldsymbol{b}^{2}}{z^{2}}\right)
$$

TMD Frag. Func.
11 free parameters

GENERAL CONSIDERATIONS

gENERAL CONSIDERATIONS

> Not easy to perform direct comparison due to different formalisms employed

GENERAL CONSIDERATIONS

> Not easy to perform direct comparison due to different formalisms employed
> In all extractions, simple Gaussians are not sufficient

GENERAL CONSIDERATIONS

> Not easy to perform direct comparison due to different formalisms employed
> In all extractions, simple Gaussians are not sufficient
> Nontrivial x-dependence is required

GENERAL CONSIDERATIONS

> Not easy to perform direct comparison due to different formalisms employed

- In all extractions, simple Gaussians are not sufficient
> Nontrivial x-dependence is required
> No flavor dependence is needed for the moment (note however that some flavor dependence is already generated by the collinear PDFs)

AVAILABLE TOOLS: NANGA PARBAT

https://github.com/vbertone/NangaParbat

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:
https://github.com/vbertone/NangaParbat/releases
For the last development branch you can clone the master code:

> git clone git@github.com:vbertone/NangaParbat.git

If you instead want to download a specific tag:

AVAILABLE TOOLS: ARTEMIDE

https://teorica.fis.ucm.es/artemide/

TMDLIB AND TMDPLOTTER

https://tmdlib.hepforge.org/

Soon more TMD parametrisation will be available

TOOLS USED FOR DRELL-YAN PREDICTIONS

SCETlib

[https://confluence.desy.de/display/scetlib]
CuTe
[https://cute.hepforge.org]

DYRes/DYTURBO

 [https://gitlab.cern.ch/DYdevel/DYTURBO]ReSolve
[https://github.com/fkhorad/reSolve]

RadISH

[https://arxiv.org/pdf/I705.09127.pdf]

PB-TMD

[https://arxiv.org/pdf/l906.00919.pdf]
NangaParbat
[https://github.com/vbertone/NangaParbat] arTeMiDe
[https://teorica.fis.ucm.es/artemide/]
V. Bertone's talk at LHC EW WG General Meeting, Dec 2019 https://indico.cern.ch/event/849342/

SCET

qт-res.

PB

TMD

TOOLS USED FOR DRELL-YAN PREDICTIONS

SCETlib

[https://confluence.desy.de/display/scetlib]
CuTe
[https://cute.hepforge.org]

DYRes/DYTURBO

[https://gitlab.cern.ch/DYdevel/DYTURBO]
ReSolve
[https://github.com/fkhorad/reSolve]

RadISH

[https://arxiv.org/pdf/ $705.09127 . p d f]$

PB-TMD

[https://arxiv.org/pdf/1906.00919.pdf]
NangaParbat
[https://github.com/vbertone/NangaParbat]

arTeMiDe

[https://teorica.fis.ucm.es/artemide/]
V. Bertone's talk at LHC EW WG General Meeting, Dec 2019 https://indico.cern.ch/event/849342/

SCET

There is an entire industry of tools that make predictions for observables related to TMDs. Most of them neglect SIDIS and the important effects coming from nonperturbative TMD components.

OPEN ISSUES

TRANSVERSE MOMENTUM IN FRAGMENTATION FUNCTIONS

Seidl et al., arXiv:1807.02101

First direct measurement of TMD effects in fragmentation functions Makes use of thrust axis: the formalism should take it into account

TRANSVERSE MOMENTUM IN FRAGMENTATION FUNCTIONS

First direct measurement of TMD effects in fragmentation functions Makes use of thrust axis: the formalism should take it into account

Parton-model attempt to extract TMDFFs: arXiv:1907.12294

FLAVOR DEPENDENCE OF TMDS

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Ratio width of down valence/
width of up valence

FLAVOR DEPENDENCE OF TMDS

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Ratio width of down valence/ width of up valence

FLAVOR DEPENDENCE OF TMDS

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Ratio width of down valence/ width of up valence

FLAVOR DEPENDENCE OF TMDS

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Ratio width of down valence/ width of up valence

There is room for flavour dependence, but we don't control it well

IMPACT ON W MASS DETERMINATION

IMPACT ON W MASS DETERMINATION

IMPACT ON W MASS DETERMINATION

Bacchetta, Bozzi, Radici, Ritzmann, Signori, arXiv:1807.02101
Try some judicious choices of flavour dependent widths and check

IMPACT ON W MASS DETERMINATION

Bacchetta, Bozzi, Radici, Ritzmann, Signori, arXiv:1807.02101

Try some judicious choices of flavour dependent widths and check

Set	u_{v}	d_{v}	u_{s}	d_{s}	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

IMPACT ON W MASS DETERMINATION

Bacchetta, Bozzi, Radici, Ritzmann, Signori, arXiv:1807.02101
Try some judicious choices of flavour dependent widths and check

Set	u_{v}	d_{v}	u_{s}	d_{s}	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

narrow, medium, large narrow, large, narrow
large, narrow, large
large, medium, narrow medium, narrow, large

IMPACT ON W MASS DETERMINATION

Bacchetta, Bozzi, Radici, Ritzmann, Signori, arXiv:1807.02101
Try some judicious choices of flavour dependent widths and check

Set	u_{v}	d_{v}	u_{s}	d_{s}	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

narrow, medium, large narrow, large, narrow
large, narrow, large
large, medium, narrow medium, narrow, large

	$\Delta M_{W^{+}}$	$\Delta M_{W^{-}}$		
Set	m_{T}	$p_{T \ell}$	m_{T}	$p_{T \ell}$
1	0	-1	-2	3
2	0	-6	-2	0
3	-1	9	-2	-4
4	0	0	-2	-4
5	0	4	-1	-3

IMPACT ON W MASS DETERMINATION

Bacchetta, Bozzi, Radici, Ritzmann, Signori, arXiv:1807.02101

Try some judicious choices of flavour dependent widths and check

Set	u_{v}	d_{v}	u_{s}	d_{s}	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

narrow, medium, large narrow, large, narrow large, narrow, large large, medium, narrow medium, narrow, large

	$\Delta M_{W^{+}}$	$\Delta M_{W^{-}}$		
Set	m_{T}	$p_{T \ell}$	m_{T}	$p_{T \ell}$
1	0	-1	-2	3
2	0	-6	-2	0
3	-1	9	-2	-4
4	0	0	-2	-4
5	0	4	-1	-3

Not taking into account the flavour dependence of TMDs can lead to errors in the determination of the W mass

GLUON TMDS

Higgs production

Gutierrez-Reyes, Leal-Gomez, Scimemi,
Vladimirov, arXiv:1907.03780

GLUON TMDS

Higgs production

Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov, arXiv:1907.03780

Quarkonium-pair production
Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel, arXiv:1909.05769

GLUON TMDS

Higgs production
Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov, arXiv:1907.03780

Quarkonium-pair production
Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel, arXiv:1909.05769

GLUON TMDS

Higgs production
Gutierrez-Reyes, Leal-Gomez, Scimemi,
Vladimirov, arXiv:1907.03780

Also linearly polarized gluon TMD is involved!

$$
p p \rightarrow H(\rightarrow \gamma \gamma)+\mathrm{X}
$$

Quarkonium-pair production
Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel, arXiv:1909.05769

GLUON TMDS

Higgs production
Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov, arXiv:1907.03780

Also linearly polarized gluon TMD is involved!

$$
p p \rightarrow H(\rightarrow \gamma \gamma)+\mathrm{X}
$$

Quarkonium-pair production
Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel, arXiv:1909.05769

Gaussian $\left\langle\mathrm{kT}^{2}\right\rangle=3.3 \pm 0.8 \mathrm{GeV}^{2}-$

GLUON TMDS

Higgs production
Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov, arXiv:1907.03780

> Also linearly polarized gluon TMD is involved!

$$
p p \rightarrow H(\rightarrow \gamma \gamma)+\mathrm{X}
$$

Quarkonium-pair production
Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel, arXiv:1909.05769

Gaussian $\left\langle\mathrm{k}^{2}\right\rangle=3.3 \pm 0.8 \mathrm{GeV}^{2}-$

see also talk by Raj Kishore for other process

MODEL FOR GLUON TMDS

see talk by F. Celiberto at REF2019
https://agenda.infn.it/event/17749

MODEL FOR GLUON TMDS

see talk by F. Celiberto at REF2019 https://agenda.infn.it/event/17749

Spectator model with spectral function

Reproduces collinear gluon PDFs

MODEL FOR GLUON TMDS

see talk by F. Celiberto at REF2019 https://agenda.infn.it/event/17749
Spectator model with spectral function
Reproduces collinear gluon PDFs
Generates nontrivial and widely different TMDs

THE FUTURE

NEW DATA FROM COMPASS

Multidimesional binning

NEW DATA FROM COMPASS

Multidimesional binning

COMPASS is in "full swing" mode.
Proton-target data are also expected

FIRST JLAB PRELIMINARY DATA

FIRST JLAB PRELIMINARY DATA

FIRST JLAB PRELIMINARY DATA

Only 2\% of approved data taking

FIRST JLAB PRELIMINARY DATA

SOLID @ JLAB

LHCb FIXED TARGET, INCLUDING POLARISATION

https://indico.cern.ch/event/755856/

LHCb FIXED TARGET, INCLUDING POLARISATION

https://indico.cern.ch/event/755856/

ALICE FIXED TARGET

https://indico.cern.ch/event/755856/

ALICE FIXED TARGET

https://indico.cern.ch/event/755856/

EXPECTED EXTENSION OF DATA RANGE

THE ELECTRON-ION COLLIDER PROJECT

BNL concept

JLab concept

> High luminosity: $\left(10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$
> Variable CM energy: 20-100 GeV
> Highly polarized beams
> Protons and other nuclei

Transversity 2020

25-29 May 2020

Almo Collegio Borromeo, Pavia, Italy
Europe/Rome timezone

Overview

Committees
Timetable
Registration
Participant List
Accommodation

Contacts

transversity2020@unipv.it
\square info@pragmacongressi.it

- +390382309579

Transversity 2020 is the 6th international workshop on transverse polarization phenomena in hard processes, following those held in 2005 on Lake Como (Italy), 2008 in Ferrara (Italy), 2011 in Lošinj (Croatia), 2014 in Cagliari (Italy), and 2017 in Frascati (Italy)

The aim of the workshop is to provide an environment in which present theoretical and experimental knowledge in the field of transversity, transverse-momentum dependent distribution and fragmentation functions as well as generalised parton distribution functions will be presented and discussed in depth, together with new theoretical ideas and experimental perspectives. The workshop represents a valuable opportunity to gather the spin physics community, with a broad participation of theorists, as well as of experimentalists working in international collaborations at BEPC-II, BNL, CERN, DESY, KEK and Jefferson Lab (JLab), all deeply involved in this area of research. The workshop will also be a unique occasion for young researchers to form a detailed and up-to-date perspective on this fast-developing research field, and to present and discuss their own work and projects in a highly stimulating and reactive context.

UNIVERSITÀ
DI PAVIA

MAPPING
THE PROTON IN 3D
https://agenda.infn.it/e/transversity2020

CONCLUSIONS

CONCLUSIONS

> Full-fledged TMD extractions up to NN3LL accuracy are coming out and being constantly improved

CONCLUSIONS

- Full-fledged TMD extractions up to NN3LL accuracy are coming out and being constantly improved
> For the moment, it is not straightforward to compare different extractions

CONCLUSIONS

> Full-fledged TMD extractions up to NN3LL accuracy are coming out and being constantly improved
> For the moment, it is not straightforward to compare different extractions
> Fragmentation functions need independent data

CONCLUSIONS

> Full-fledged TMD extractions up to NN3LL accuracy are coming out and being constantly improved
> For the moment, it is not straightforward to compare different extractions
> Fragmentation functions need independent data
> Flavor dependence of TMDs still not well constrained

CONCLUSIONS

> Full-fledged TMD extractions up to NN3LL accuracy are coming out and being constantly improved
> For the moment, it is not straightforward to compare different extractions
> Fragmentation functions need independent data
> Flavor dependence of TMDs still not well constrained

- We expect a steady flow of data coming up in the next years

BACKUP SLIDES

LOW-bT MODIFICATIONS

$$
\log \left(Q^{2} b_{T}^{2}\right) \rightarrow \log \left(Q^{2} b_{T}^{2}+1\right)
$$

see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104

LOW-bT MODIFICATIONS

see, e.g., Bozzi, Catani, De Florian, Grazzini

$$
\begin{aligned}
& \log \left(Q^{2} b_{T}^{2}\right) \rightarrow \log \left(Q^{2} b_{T}^{2}+1\right) \quad \text { hep-ph } 0302104 \\
& b_{*}\left(b_{c}\left(b_{T}\right)\right)=\sqrt{\frac{b_{T}^{2}+b_{0}^{2} /\left(\left(C_{5}^{2} Q^{2}\right)\right.}{1+b_{\mathrm{T}}^{2} / b_{\max }^{2}+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}} \quad b_{\min } \equiv b_{*}\left(b_{c}(0)\right)=\frac{b_{0}}{C_{5} Q} \sqrt{\frac{1}{1+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}}
\end{aligned}
$$

Collins et al.
arXiv:1605.00671

LOW-bT MODIFICATIONS

$$
\begin{gathered}
\log \left(Q^{2} b_{T}^{2}\right) \rightarrow \log \left(Q^{2} b_{T}^{2}+1\right) \quad \begin{array}{l}
\text { see, e.g., Bozzi, Catani, De Florian, Grazzini } \\
\text { hep-ph/O302104 }
\end{array} \\
b_{*}\left(b_{c}\left(b_{\mathrm{T}}\right)\right)=\sqrt{\frac{b_{\mathrm{T}}^{2}+b_{0}^{2} /\left(C_{5}^{2} Q^{2}\right)}{1+b_{\mathrm{T}}^{2} / b_{\max }^{2}+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}} \quad \begin{array}{l}
b_{\min } \equiv b_{*}\left(b_{c}(0)\right)=\frac{b_{0}}{C_{5} Q} \sqrt{\frac{1}{1+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}} \\
\begin{array}{l}
\text { Collins et al. } \\
\text { arXiv:1605.00671 }
\end{array}
\end{array}
\end{gathered}
$$

- The justification is to recover the integrated result ("unitarity constraint")
- Modification at low b_{T} is allowed because resummed calculation is anyway unreliable there

PAVIA 2017 "CHOICES"

PAVIA 2017 "CHOICES"

$$
g_{K}=-g_{2} \frac{b_{T}^{2}}{2} \quad \mu_{0}=1 \mathrm{GeV}
$$

PAVIA 2017 "CHOICES"

$$
\begin{array}{ll}
g_{K}=-g_{2} \frac{b_{T}^{2}}{2} & \mu_{0}=1 \mathrm{GeV} \\
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} & \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \\
b_{\max }=2 e^{-\gamma_{E}} \\
b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q}
\end{array}
$$

PAVIA 2017 "CHOICES"

$$
\begin{array}{ll}
g_{K}=-g_{2} \frac{b_{T}^{2}}{2} & \mu_{0}=1 \mathrm{GeV} \\
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} & \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \\
b_{\max }=2 e^{-\gamma_{E}} \\
b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q}
\end{array}
$$

These are all choices that should be at some point checked/challenged

PAVIA 2017 "CHOICES"

$$
\begin{array}{ll}
\hat{f}_{1}^{q}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(C_{q i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{q}\left(x, b_{T}\right) \\
g_{K}=-g_{2} \frac{b_{T}^{2}}{2} \quad \mu_{0}=1 \mathrm{GeV} \\
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} & \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \\
b_{\max }=2 e^{-\gamma_{E}} \\
b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q}
\end{array}
$$

These are all choices that should be at some point checked/challenged

EFFECTS OF b_{*} PRESCRIPTION

$$
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}}
$$

EFFECTS OF b_{*} PRESCRIPTION

$$
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}}
$$

No significant effect at high Q, but large effect at low Q (inhibits perturbative contribution)

DATA SELECTION IN PAVIA 2017

$Q^{2}>1.4 \mathrm{GeV}^{2}$
$0.2<z<0.7$
$P_{h T}, q_{T}<\operatorname{Min}[0.2 Q, 0.7 Q z]+0.5 \mathrm{GeV}$

We checked also

DATA SELECTION IN PAVIA 2017

$Q^{2}>1.4 \mathrm{GeV}^{2}$
$0.2<z<0.7$
$P_{h T}, q_{T}<\operatorname{Min}[0.2 Q, 0.7 Q z]+0.5 \mathrm{GeV}$
Total number of data points: 8059
Total $\mathbf{x}^{2} /$ dof $=1.55$

We checked also

DATA SELECTION IN PAVIA 2017

$Q^{2}>1.4 \mathrm{GeV}^{2}$
$0.2<z<0.7$
$P_{h T}, q_{T}<\operatorname{Min}[0.2 Q, 0.7 Q z]+0.5 \mathrm{GeV}$
Total number of data points: 8059
Total $\mathbf{x}^{2} /$ dof $=1.55$

We checked also
$P_{h T}<\operatorname{Min}[0.2 Q, 0.5 Q z]+0.3 \mathrm{GeV}$
Total number of data points: 3380
Total $\mathbf{X}^{2} /$ dof $=0.96$

DATA SELECTION IN PAVIA 2017

$Q^{2}>1.4 \mathrm{GeV}^{2}$
$0.2<z<0.7$
$P_{h T}, q_{T}<\operatorname{Min}[0.2 Q, 0.7 Q z]+0.5 \mathrm{GeV}$
Total number of data points: 8059
Total $\mathbf{x}^{2} /$ dof $=1.55$

We checked also
$P_{h T}<\operatorname{Min}[0.2 Q, 0.5 Q z]+0.3 \mathrm{GeV} \quad P_{h T}<0.2 Q z$
Total number of data points: 3380 Total number of data points: 477
Total $\mathbf{X}^{2} /$ dof $=0.96$ Total $\mathbf{X}^{2} /$ dof $=1.02$

BENCHMARKING OF DIFFERENT CODES

V. Bertone's talk at LHC EW WG General Meeting, Dec 2019 https://indico.cern.ch/event/849342/

TMDS AND TWO-SCALE EVOLUTION

The ζ-prescription is equivalent to the popular CSS-scheme since it satisfies the same set of differential equations. Nonetheless, this equivalence is strict only within an all-order perturbation theory and it is numerically violated for any truncated series.

TMDS AND TWO-SCALE EVOLUTION

The ζ-prescription is equivalent to the popular CSS-scheme since it satisfies the same set of differential equations. Nonetheless, this equivalence is strict only within an all-order perturbation theory and it is numerically violated for any truncated series.

NONPERTURBATIVE TMD EVOLUTION FROM LATIICE

talk by I. Stewart at REF2019, work in progress with P. Shanahan, M. Wagman, Y. Zhao

NONPERTURBATIVE TMD EVOLUTION FROM LATIICE

talk by I. Stewart at REF2019, work in progress with P. Shanahan, M. Wagman, Y. Zhao

NONPERTURBATIVE TMD EVOLUTION FROM LATIICE

talk by I. Stewart at REF2019, work in progress with P. Shanahan, M. Wagman, Y. Zhao

