Shear and pressure

distributions in the proton

from lattice QCD

Will Detmold

work wth Phiala Shanahan
PRL (2019) arXiv:I8I0.07589
PRD (2019) arXiv: 1810.04626

Gluon structure

Gluons offer a new window on nuclear structure

- Past 60+ years: detailed view of quark structure of nucleons
- Gluon structure also important - Unpolarised gluon PDF dominant at small longitudinal momentum fraction
- Other aspects of gluon structure relatively unexplored

Parton distributions in the proton

Gluon angular momentum

- Gluon helicity much less well constrained
- Major focus of RHIC-spin program
- Asymmetries in polarised $p p \rightarrow \pi X, D X, B X$, jets
- Orbital angular momentum of gluons even less understood
- GluonTMDs
- Major motivation for EIC

Gluon structure

How much do gluons contribute to the proton's

- Momentum
- Spin
- Mass
- D-term

What are the gluon distributions in a proton

- PDFs, GPDs,TMDs
- Pressure, Shear
- Gluon 'radius/
radii'

How is the gluon structure of a proton modified in a nucleus

\author{

- Gluon 'EMC' effect
 - Exotic glue
}

Gluon structure

How much do gluons contribute to the proton's

- Momentum
- Mass
- Spin
- D-term

What are the gluon distributions in a proton

- PDFs, GPDs,TMDs
- Pressure, Shear
- Gluon 'radius/
radii'

How is the gluon structure of a proton modified
in a nucleus

Exotic glue

Energy-momentum tensor

Many of these properties derived from Energy-Momentum Tensor (conserved Noether current associated with Lorentz translations)

Matrix elements of traceless gluon EMT for spin-half nucleon:

$$
\begin{array}{r}
\left\langle p^{\prime}, s^{\prime}\right| G_{\{\mu \alpha}^{a} G_{\nu\}}^{a \alpha}|p, s\rangle=\bar{U}\left(p^{\prime}, s^{\prime}\right)(\\
\left.A_{g}(t) \gamma_{\{\mu} P_{\nu\}}+B_{g}(t) \frac{i P_{\{\mu} \sigma_{\nu\} \rho} \Delta^{\rho}}{2 M_{N}}+D_{g}(t) \frac{\Delta_{\{\mu} \Delta_{\nu\}}}{4 M_{N}}\right) U(p, s) \\
\text { Generalised gluon form factors } \quad \Delta_{\mu}=p_{\mu}^{\prime}-p_{\mu} P_{\mu}=\left(p_{\mu}+p_{\mu}^{\prime}\right) / 2 \quad t=\Delta^{2}
\end{array}
$$

- Three generalised gluon form factors $A_{g}(t), B_{g}(t), D_{g}(t)$
- Sum rules with quark pieces in forward limit
- Momentum fraction $A_{a}(0)=\langle x\rangle_{a} \rightarrow \sum_{a=q, g} A_{a}(0)=1$
- Spin $J_{a}(t)=\frac{1}{2}\left(A_{a}(t)+B_{a}(t)\right)$

$$
\sum_{a=q, g} J_{a}(0)=\frac{1}{2}
$$

- D-terms $D_{a}(0)$ unknown but equally fundamental!

D-term

D-term GFF encodes the pressure and shear distributions in the nucleon (Breit frame)

$$
\begin{gathered}
s(r)=-\frac{r}{2} \frac{d}{d r} \frac{1}{r} \frac{d}{d r} \widetilde{D}(r), \quad p(r)=\frac{1}{3} \frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d}{d r} \widetilde{D}(r), \\
\widetilde{D}(r)=\int \frac{d^{3} \vec{p}}{2 E(2 \pi)^{3}} e^{-i \vec{p} \cdot \vec{r}} D\left(-\vec{p}^{2}\right)
\end{gathered}
$$

- Quark and gluon shear forces individually well-defined (i.e., scaledependent partial contributions $s_{q, g}(r)$
- Pressure defined only for the total system (pieces depend also on GFFs related to the trace terms of the EMT that cancel in the sum)

Generalised parton distributions

GFFs correspond to lowest moments of GPDs:

$$
\begin{aligned}
\int_{0}^{1} \mathrm{~d} x H_{g}(x, \xi, t)=A_{g}(t)+\xi^{2} D_{g}(t), & \int_{0}^{1} \mathrm{~d} x E_{g}(x, \xi, t)=B_{g}(t)-\xi^{2} D_{g}(t) \\
\int_{-1}^{1} \mathrm{~d} x x H_{q}(x, \xi, t)=A_{q}(t)+\xi^{2} D_{q}(t), & \int_{-1}^{1} \mathrm{~d} x x E_{q}(x, \xi, t)=B_{q}(t)-\xi^{2} D_{q}(t)
\end{aligned}
$$

Quark GPDs: constraints from JLab, HERA, COMPASS, by DVCS, DVMP, future improvements from JLab 12 GeV

- Gluon GPDs: almost unknown from experiment, future constraints are a central goal of EIC

Leading twist nucleon gluon GPDs:
Gluon field-
strength tensor

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{d \lambda}{2 \pi} e^{i \lambda x}\left\langle p^{\prime}, s^{\prime}\right| G_{a}^{\{\mu \alpha}\left(-\frac{\lambda}{2} n\right)\left[\mathcal{U}_{\left[-\frac{\lambda}{2} n, \frac{\lambda}{2} n\right]}^{(A)}\right]_{a b}^{G_{b \alpha}^{\nu\}}\left(\frac{\lambda}{2} n\right)|p, s\rangle} \quad t=\Delta^{2} n^{2}=0 \quad \xi=-\frac{1}{2} n \cdot \Delta / n \cdot P \\
=\frac{1}{2}\left(H_{g}(x, \xi, t) \bar{U}\left(p^{\prime}, s^{\prime}\right) P^{\{\mu} \gamma^{\nu\}} U(p, s)+E_{g}(x, \xi, t) \bar{U}\left(p^{\prime}, s^{\prime}\right) \frac{P^{\{\mu} i \sigma^{\nu\} \alpha} \Delta_{\alpha}}{2 M} U(p, s)\right)+\ldots, \\
\text { GPDs(Bjorken x, skewness, mom transfer) }
\end{gathered}
$$

D-term from JLab DVCS

Recent experimental determination of DVCS D-term and extraction of proton pressure distribution
V. D. Burkert, L. Elouadrhiri, and F. X. Girod, Nature 557, 396 (20I8)

$$
s(r)=-\frac{r}{2} \frac{d}{d r} \frac{1}{r} \frac{d}{d r} \widetilde{D}(r), \quad p(r)=\frac{1}{3} \frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d}{d r} \widetilde{D}(r)
$$

- Strong repulsive pressure near the centre of the proton
- Binding pressure at greater distances.
- Peak pressure near the centre ~1035 Pascal, greater than pressure estimated for neutron stars
- Key assumptions: gluon D-term same as quark term, tripole form factor model, $D_{u}(t, \mu)=D_{d}(t, \mu)$

Test assumptions in pressure extraction

Radial pressure distribution

Gluon structure

First-principles QCD calculations

\rightarrow QCD benchmarks and predictions ahead of experiment

Lattice QCD

Numerical first-principles approach to non-perturbative QCD

- Discretise equations of QCD onto space-time grid
- Calculate physical quantities
- Take limit of vanishing discretisation afterwards

Lattice QCD

Numerical first-principles approach to non-perturbative QCD

QCD equations \Longleftrightarrow integrals over the values of quark and gluon fields on each site/link (QCD path integral)

- 10^{12} variables (for state-of-the-art)

- Evaluate by importance sampling
- Paths near classical action dominate
- Calculate physics on a set (ensemble) of samples of the quark and gluon fields

Lattice QCD

Calculate the nucleon mass

- Create three quarks, annihilate them far from source

Tie together creation and annihilation operators in all possible ways (contractions)

- QCD path integral adds quark antiquark pairs and gluons automatically
- Measure exponentially decaying correlation to extract mass

$$
M(t)=\ln \left[\frac{C(t)}{C(t+1)}\right] \xrightarrow{t \rightarrow \infty} E_{0}
$$

Lattice QCD

- Calculations use world's largest computers
- Many millions of CPU/GPU hours
- Specifically designed processors for QCD (QCDOC precursor of BlueGene computers)

Lattice QCD

- Ground state hadron spectrum reproduced
- p-n mass splitting reproduced

- Predictions for new states with controlled uncertainties

Lattice QCD Matrix Elements

Calculate matrix elements

- Create three quarks (correct quantum numbers) at a source and annihilate the three quarks at sink far from source
- Insert operator at intermediate timeslice

- Remove time-dependence by dividing out with two-point correlators:

$$
\frac{C_{3}\left(t, \tau, \overrightarrow{\left.p^{\prime}, \vec{q}\right)}\right.}{C_{2}\left(t-\tau, p^{\prime}\right) C_{2}(\tau, p)} \xrightarrow{t \rightarrow \infty}\left\langle N\left(p^{\prime}\right)\right| \mathcal{O}(q)|N(p)\rangle
$$

Gluon GFFs from LQCD

Construct system of equations for generalised gluon form factors

Ratios of 3 pt and 2 pt correlation functions:

$$
\begin{gathered}
R_{s ;\{;, i}\left(\vec{p}, \vec{p}^{\prime}, t_{f}, \tau\right)=\frac{C_{s ; \mathcal{P}^{2}, i}^{3 \mathrm{p}}\left(\vec{p}, \vec{p}^{\prime}, t_{f}, \tau\right)}{C_{s}^{2 \mathrm{pt}}\left(\vec{p}^{\prime}, t_{f}\right)} \sqrt{\frac{C_{s}^{2 \mathrm{pt}}\left(\vec{p}, t_{f}-\tau\right) C_{s}^{2 \mathrm{pt}}\left(\vec{p}^{\prime}, t_{f}\right) C_{s}^{2 \mathrm{pt}}\left(\vec{p}^{\prime}, \tau\right)}{C_{s}^{\mathrm{pt}}\left(\vec{p}^{\prime}, t_{f}-\tau\right) C_{s}^{2 \mathrm{pt}}\left(\vec{p}, t_{f}\right) C_{s}^{2 \mathrm{pt}}(\vec{p}, \tau)}} \stackrel{t_{f} \gg \tau \gg 0}{\longrightarrow} \frac{\operatorname{Tr}\left[\Gamma_{s}\left(p^{\prime}+M_{N}\right) \mathcal{F}_{i}\left[A_{g}, B_{g}, D_{g}\right]\left(p+M_{N}\right)\right]}{8 \sqrt{E_{\vec{p}}^{(N)} E_{\overrightarrow{p^{\prime}}}^{(N)}\left(E_{\vec{p}}^{(N)}+M_{N}\right)\left(E_{\vec{p}^{\prime}}^{(N)}+M_{N}\right)}} \\
\mathcal{F}_{\mu \nu}\left[A_{g}, B_{g}, D_{g}\right]=A_{g}(t) \gamma_{\{\mu} P_{\nu\}}+B_{g}(t) \frac{i P_{\{\mu} \sigma_{\nu\} \rho} \Delta^{\rho}}{2 M_{N}}+D_{g}(t) \frac{\Delta_{\{\mu} \Delta_{\nu\}}}{4 M_{N}}
\end{gathered}
$$

Generalised gluon form factors

$$
\Delta_{\mu}=p_{\mu}^{\prime}-p_{\mu} \quad P_{\mu}=\left(p_{\mu}+p_{\mu}^{\prime}\right) / 2 . \quad t=\Delta^{2}
$$

- Nucleon spin up/down: $\Gamma_{s= \pm 1}$
- Sink and operator momenta:

$$
\begin{aligned}
& \left|\overrightarrow{p^{\prime}}\right|^{2} \leq 5(2 \pi / L)^{2} \\
& |\vec{\Delta}|^{2} \leq 18(2 \pi / L)^{2}
\end{aligned}
$$

- Operator index choices: two different irreducible representations of $\mathrm{H}(4)$

$$
\begin{aligned}
& \mathcal{O}_{i=\{11, \ldots, 6\}}^{\tau_{3}^{(6)}}=\left\{\frac{(-i)^{\delta_{\nu 0}}}{\sqrt{2}}\left(\mathcal{O}_{\mu \nu}+\mathcal{O}_{\nu \mu}\right), \quad 0 \leq \mu<\nu \leq 3\right\} \\
& \mathcal{O}_{1}^{\tau_{1}^{(3)}}=\frac{1}{2}\left(\mathcal{O}_{11}+\mathcal{O}_{22}-\mathcal{O}_{33}+\mathcal{O}_{00}\right), \cdots,
\end{aligned}
$$

Gluon GFFs from LQCD

One ensemble, $\mathrm{m}_{\pi} \sim 450 \mathrm{MeV}$ (physical masses running now)

| L / a | T / a | β | $a m_{l}$ | $a m_{s}$ | $a(\mathrm{fm})$ | $L(\mathrm{fm})$ | $T(\mathrm{fm})$ | $m_{\pi}(\mathrm{MeV})$ | $m_{K}(\mathrm{MeV})$ | $m_{\pi} L$ | $m_{\pi} T$ | $N_{\text {cfg }}$ | $N_{\text {meas }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 96 | 6.1 | -0.2800 | -0.2450 | $0.1167(16)$ | 3.7 | 11.2 | $450(5)$ | $596(6)$ | 8.5 | 25.6 | 2821 | 203 |

Clean plateaus in effective masses for $\left|\overrightarrow{p^{\prime}}\right|^{2} \leq 5(2 \pi / L)^{2}$

Gluon GFFs from LQCD

PION: Clean signals in 3pt/2pt ratios (examples)

Plateau fits
---- Solution of system of equations projected back
smeared-point smeared-smeared

Gluon GFFs from LQCD

PION: Clean signals in 3pt/2pt ratios (examples)

$t_{f}=13$ (dark points), $t_{f}=18$ (pale points)

Plateau fits
--- - Solution of system of equations projected back
smeared-point
smeared-smeared

Gluon GFFs from LQCD

NUCLEON: Clean signals in 3pt/2pt ratios (examples)

Plateau fits
-=- - Solution of system of equations projected back

$\tau=4$ (dark points), $\tau=6$ (pale points)
smeared-point smeared-smeared

Gluon GFFs from LQCD

NUCLEON: Clean signals in 3pt/2pt ratios (examples)

Plateau fits
-=- - Solution of system of equations projected back
$1 t_{f}=12$ (dark points), $t_{f}=14$ (pale points)

smeared-point

 smeared-smeared
Gluon GFFs from LQCD

Solve system of equations for GFFs in bins in $t=\left(p^{\prime}-p\right)^{2}$

Pion

Nucleon

- Colour coding: three momentum transfer $\vec{\Delta}^{2}=\left(\vec{p}^{\prime}-\vec{p}\right)^{2}$
- Point size \propto number of three-momenta at that $\vec{\Delta}^{2}$
- Grey bands: bins in t

Renormalisation

Non-perturbative RI-MOM renormalisation of gluon operator

- Mixing with quark operator neglected

Found to be small in lattice PT e.g., Alexandrou et al., | $6 \mid 1.0690$ |

- One-loop perturbative matching to $\overline{\mathrm{MS}}$ scheme:Yang et al., $16 \mid 2.02855$

$$
\mathcal{O}^{\overline{\mathrm{MS}}}\left(\mu^{2}\right)=Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}\left(\mu^{2}\right) \mathcal{O}^{\mathrm{latt}}=\mathcal{R}^{\overline{\mathrm{MS}}}\left(\mu^{2}, \mu_{R}^{2}\right) Z_{\mathcal{O}}^{\mathrm{RI}-\mathrm{MOM}}\left(\mu_{R}^{2}\right) \mathcal{O}^{\text {latt }}
$$

Calculate RI-MOM coefficient using Landau-gauge fixed gluon 2pt function

$$
\begin{aligned}
& \left.\left(Z_{\hat{\mathcal{O}}}^{\mathrm{RI}-\mathrm{MOM}}\left(\mu_{R}^{2}\right)\right)^{-1}=\frac{\left.4 p^{2}\left\langle\hat{\mathcal{O}}_{\alpha \beta} \operatorname{Tr}\left[A_{\tau}(p) A_{\tau}(-p)\right]\right\rangle\right\rangle}{\Lambda_{\hat{\mathcal{O}}}^{\text {tre }}(p)\left\langle\operatorname{Tr}\left[A_{\tau}(p) A_{\tau}(-p)\right]\right\rangle} \right\rvert\, \begin{array}{c}
p^{2}=\mu_{R}^{2} \\
\tau \neq \alpha \neq \beta \\
, p_{\tau}=0
\end{array} \\
& \Lambda_{\mathcal{O}}^{\text {tree }}(p)=\left\langle\hat{\mathcal{O}}_{\alpha \beta}^{\mathfrak{R}} \operatorname{Tr}\left[A_{\tau}(p) A_{\tau}(-p)\right]\right\rangle_{\text {amp }}^{\mathrm{tree}^{\text {tre }}} \text {. }
\end{aligned}
$$

(1) Wilson-flowed gluon 2pts

这 No flow in 2pts

Gluon GFFs from LQCD

Uncertainties from renormalisation not shown

Gluon GFFs from LQCD

Cross-sections: GFF not shown in each projection taken to its central value

LQCD Pion GFFs

Pion gluon GFFs $\mathrm{m}_{\boldsymbol{\pi}} \sim 450 \mathrm{MeV}$

Solve system of equations simultaneously for both hypercubic irreps for each binned fourmomentum transfer

Dipole-like fall-off with momentum transfer

- Momentum fraction $A_{a}(0)=\langle x\rangle_{a}$

$$
\rightarrow \sum_{a=q, g} A_{a}(0)=1
$$

- D-terms $D_{a}(0)$ related to pressure and shear distributions

LQCD Pion GFFs

Pion gluon GFFs $\mathrm{m}_{\boldsymbol{\pi}} \sim 450 \mathrm{MeV}$

Solve system of equations simultaneously for both hypercubic irreps for each binned fourmomentum transfer

Dipole-like fall-off with momentum transfer

- Momentum fraction $A_{a}(0)=\langle x\rangle_{a}$ $\longrightarrow \sum_{a=q, g} A_{a}(0)=1$
- D-terms $D_{a}(0)$ related to pressure and shear distributions
gluon: Shanahan, Detmold, PRD (2019)
quark: Brommel Ph.D. thesis (2007) $\mathrm{m}_{\pi} \sim 840 \mathrm{MeV}$

LQCD pion pressure

LQCD Nucleon GFFs

Nucleon gluon GFFs, $\mathrm{m}_{\boldsymbol{\pi}} \sim 450 \mathrm{MeV}$

Dipole-like fall-off with momentum transfer

Gluon momentum fraction

Gluon momentum fraction $A_{a}(0)=\langle x\rangle_{a}$

LQCD Nucleon GFFs

Nucleon gluon GFFs, $\mathrm{m}_{\boldsymbol{\pi}} \sim 450 \mathrm{MeV}$

Tripole-like fall-off with momentum transfer

Gluon GFFs: Shanahan, Detmold, PRD (2019) PRL (2019)
Quark GFFs: P. Hägler et al. (LHPC), PRD77, 094502 (2008)
Expt quark GFFs (BEG): Burkert et al, Nature 557, 396 (2018)

Nucleon D-term GFFs

Nucleon gluon GFFs, $\mathrm{m}_{\boldsymbol{\pi}} \sim 450 \mathrm{MeV}$

Tripole-like fall-off with momentum transfer

Gluon GFFs: Shanahan, Detmold, PRD (2019), PRL (2019)
Quark GFFs: P. Hägler et al. (LHPC), PRD77, 094502 (2008)
Expt quark GFFs (BEG): Burkert et al, Nature 557, 396 (2018)

Key assumptions in pressure extraction from DVCS

- Gluon D-term same as quark term in magnitude and shape
Factor of ~ 2 difference in magnitude, somewhat different tdependence
- Tripole form factor model LQCD results consistent with ansatz, but more general form is less well constrained
- Isovector quark D-term vanishes $D_{u-d}(t) \sim 0$ from other LQCD studies

LQCD proton pressure

Nucleon pressure using LQCD results for quark and gluon GFFs, $\mathrm{m}_{\boldsymbol{\pi}} \sim 450 \mathrm{MeV}$

Gluon GFFs: Shanahan, Detmold, PRD (2019), PRL (2019)
Quark GFFs: P. Hägler et al. (LHPC), PRD77, 094502 (2008)

LQCD + Expt proton pressure

Nucleon pressure using LQCD results for gluon GFF, JLab results for quark GFF

Gluon GFFs: Shanahan, Detmold, PRD (2019), PRL (2019)
Quark GFFs: P. Hägler et al. (LHPC), PRD77, 094502 (2008)
Expt quark GFFs (BEG): Burkert et al, Nature 557, 396 (2018)

LQCD + Expt proton pressure

Nucleon pressure using LQCD results for gluon GFF, JLab results for quark GFF

Gluon GFFs: Shanahan, Detmold, PRD (2019), PRL (2019)
Quark GFFs: P. Hägler et al. (LHPC), PRD77, 094502 (2008)
Expt quark GFFs (BEG): Burkert et al, Nature 557, 396 (2018)

LQCD proton shear

Gluon GFFs: Shanahan, Detmold, PRD (2019), PRL (2019) Quark GFFs: P. Hägler et al. (LHPC), PRD77, 094502 (2008)
Expt quark GFFs (BEG): Burkert et al, Nature 557, 396 (2018)

Tangential shear
vector field $4 \pi r^{2} T_{i j} \boldsymbol{e}_{j}^{\phi}$

-0.02	-0.01	0	0.01	0.02	0.03

Gluon structure from LQCD

LQCD calculations of proton and pion energy momentum tensor

- Gluon and quark gravitational form factors
- Shear and pressure distributions
- New physical mass calculations are ongoing
- Complements recent experimental studies
- Support analysis assumptions
- Suggest target kinematics for future model independent extractions at JLabl2 and EIC

Next: pressure in nuclei

Pressure in light nuclei c.f. pressure in the nucleon?

[^0]Quark GFFs: P. Hägler et al. (LHPC), PRD77, 094502 (2008)

Next: pressure in nuclei

Pressure in light nuclei

c.f. pressure in the nucleon?

Gluon GFFs: Shanahan, Detmold, PRD (2019), PRL (2019)
Quark GFFs: P. Hägler et al. (LHPC), PRD77, 094502 (2008)

Gluon structure of nuclei

How does the gluon structure of a nucleon change in a nucleus?

European Muon

 Collaboration (1983): "EMC effect"Modification of per-nucleon cross section of nucleons bound in nuclei

Gluon analogue?

Ratio of structure function F_{2} per nucleon for iron and deuterium

$$
F_{2}\left(x, Q^{2}\right)=\sum_{q=u, d, s \ldots} x e_{q}^{2}[\underbrace{\left.q\left(x, Q^{2}\right)+\bar{q}\left(x, Q^{2}\right)\right]}_{\substack{\text { Number density of } \\ \text { partons of flavour q }}}
$$

Longitudinal momentum fraction

Nuclear glue, $\mathrm{m}_{\pi} \sim 450 \mathrm{MeV}$

Deuteron gluon momentum fraction
Look for nuclear (EMC-type) effects in the first moments of the spin-independent gluon structure function

Doubly challenging

- Nuclear matrix element
- Gluon observable (suffer from poor signal-to-noise)

Ratio \propto matrix element for $0 \ll \tau \ll t$

Gluon momentum fraction

NPLQCD Collaboration PRD96 0945 I2 (20I7)

- Matrix elements of the spin-independent gluon operator in nucleon and light nuclei
- Present statistics: can't distinguish from no-EMC effect scenario
- Small additional uncertainty from mixing with quark operators

Ratio of gluon momentum fraction in nucleus to nucleon

Gluon structure of nuclei

Exotic Glue

Contributions to nuclear structure from gluons not associated with individual nucleons in nucleus

Exotic glue operator:
nucleon $\quad\langle p| \mathcal{O}|p\rangle=0$
nucleus $\langle N, Z| \mathcal{O}|N, Z\rangle \neq 0$
Jaffe and Manohar,"Nuclear Gluonometry" Phys. Lett. B223 (I989) 218

Non-nucleonic glue in deuteron

NPLQCD Collaboration PRD96 0945 I2 (20I7)

First moment of gluon transversity distribution in the deuteron, $\mathrm{m}_{\boldsymbol{\pi}} \sim 800 \mathrm{MeV}$

First evidence for non-nucleonic gluon contributions to nuclear structure

- Hypothesis of no signal ruled out to better than one part in 107
- Magnitude relative to momentum fraction as expected from large- N_{c}

Ratio \propto matrix element for $0 \ll \tau \ll t$

Ratio of 3pt and 2pt functions

[^0]: Gluon GFFs: Shanahan, Detmold, PRD (2019), PRL (2019)

