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Burkert, Elouadrhiri, Girod, 
Nature 557, 396 (2018)    

• “The average peak pressure near the center is 
about 1035 pascals, which exceeds the pressure 
estimated for the most densely packed known 
objects in the Universe, neutron stars”
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How is the pressure 
distribution extracted 
from data? 
(How does the 
proton/neutron get its 
mass and spin?)
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arXiv:1812.01479



What governs 
the EoS of 

neutron stars?

ρ>0.3-0.5 ρo

ρ>0.5-2 ρo

ρ>2ρo

https://svs.gsfc.nasa.gov/20267
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Pascalidhis et al., arXiv:1712.00451

Annala, E., Gorda, T., Kurkela, A., Nattila, J.,
& Vuorinen, A. arXiv:1903.09121

“ …the existence of quark-matter cores inside very 
massive NSs should be considered the standard 
scenario, not an exotic alternative. QM is altogether 
absent in NS cores only under very specific 
conditions,…”

baryon matter phase

QM phase
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Densities and distance scales

1fm2fm0.5 fm

quark and 
gluon 

structure

nucleons
deconfinement

Annala, E., Gorda, T., Kurkela, A., Nattila, J.,
& Vuorinen, A. arXiv:1903.09121

G. Baym et al. arXiv:1707.04966
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 In lieu of the nucleon bag model, the EoS in the quark matter 
phase can be inferred directly from the QCD Energy 
Momentum Tensor (EMT) matrix elements between nucleon 
states

 In lieu of the bag constant, B, spatial coordinates/distances 
play a fundamental role



Evaluating the mechanical properties of the proton
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.

Invariance of LQCD under translations and rotations

from translation inv. 

from rotation inv.  

Energy Momentum Tensor

Angular Momentum Tensor 



The QCD Energy Momentum Tensor 
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q and g not separately conserved
forward off-forward

q,g

S=1/2

QCD EMT matrix element between proton states

t = p- p '( )
2

= D2

D = p '- p = q - q '

P =
p + p '

2



Direct calculation of EMT form 
factors 

Donoghue et al. PLB529 (2002), 

A. Freese ,  QCD Evolution 2019
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Deeply Virtual Compton Scattering (X. Ji, 1997)
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H,E, …
p’

q

μ ν

p
p’

p

Local Operator 
Ô

• Large momentum transfer Q2>>M2
 “deep”

• Large Invariant Mass W2>>M2
 equivalent to an “inelastic” 

process

q’

EMT matrix elements  from Generalized Parton Distributions  Moments 
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2nd Mellin moments

D-term

From EMTFrom OPE
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Physical interpretation of EMT form factors 

Ph. Haegler, JoP: 295 (2011) 012009 

u+du-d

Landau&Lifshitz, Vol.7
M. Polyakov, hep-ph/0210165
M. Polyakov, P. Schweitzer, arXiv:1805.06596

Pressure

Angular Momentum

Momentum

Static Approximation
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Energy Momentum Tensor in a spin 1 system

PRD86(2012)

Deuteron
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S.L., Talk at INT U. Washington, 2012
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Quadrupole

Connected to b1 SR

Momentum

Angular Momentum

ξ-odd

From EMTFrom OPE

Connecting with observables: work in progress with Brandon Kriesten, Abha Rajan
Swadhin Taneja

Double flip
D-term dependent 
on polarization

S.Taneja et al., PRD86(2012)
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p-p’=Δ

Two distinct distance scales

z

z- zo

z3

z+

Ioffe time

Ioffe time

partons location

Pseudo-pdfs!



Using                          we can 

map out faithfully the spatial 
quark distributions in the 
transverse plane
(no modeling/approximation) 

21

G. Miller(2007)

Neutron “textbook” density

Soper (1977), Burkardt (2001)
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A10

A20

C20

fm
fm

Detmold, Shahanan, Phys.Rev.Lett. 122 (2019)

pressure

pressure

A. Rajan, T. Gorda, S. Liuti, K. Yagi, 2018
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QCD EMTGW170817

Rajan, Gorda, SL, Yagi, arXiv:1812.01479

MIT bag model: strange quark 
matter 
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0.42 0.25 0.130.5r (fm)
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⟨𝛃⟩= 2 fm

⟨𝛃⟩= 0.75 fm

b-b’b

Nuclear Spatial Density

qA

b’
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ALERT Proposal at Jefferson Lab: Nuclear Exclusive and Semi-inclusive Measurements 
with A New CLAS12 Low Energy Recoil Tracker
W. Armstrong. M. Hattawy et al.

S=0



Measuring the 
Nucleon 

Gravitomagnetic 
Form Factors

courtesy M. Defurne
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arXiv:1903.05742 

Introducing the complete formalism 

Phys. Rev. D (2020)
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 Supersedes previous work by Belitsky Kirchner Mueller and 

Kumericki Mueller

 The main advantage are :

 Covariance (not just Lab frame): a desirable feature 

for the EIC

 Transparent description of observables that ties into 

the TMD and other coincidence experiments picture
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A multi-step, multi-prong process: compare to imaging of blackhole

M87*

Electron Ion Collider (EIC)

 Main idea: use DVCS, TCS, DVMP… and 
related processes as probes

 Precision: high luminosity in a wide 
kinematic range is key!

 Data Management: unprecedented 
amount of data need new AI based 
techniques to handle the image making

Date of first proton image?...

Event Horizon Telescope (EHT)

 Main idea: Very Long Baseline 
Interferometry (VLBI), an array of smaller 
telescopes synchronized to focus on the 
same object and act as a giant telescope

 Precision: large aperture (many telescopes 
widely spaced) and high frequency radio 
waves

 Data Management: 5 petabytes physically 
transported to a central location. Data 
from all eight sites were combined to 
create a composite set of images, revealing 
for the first time M87*’s event horizon.

It took nearly two decades to achieve !
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A multi-step, multi-prong process

 Deeply Virtual Compton Scattering

 Timelike Compton Scattering

q

k+qk

p
H,E

e’

e

t=Δ2

q’= q+Δ

p’= p-Δ

e-

e+
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A multi-step, multi-prong process

 Deeply Virtual Meson Production

 Exclusive Drell Yan

k+qk

p
H,E

t=Δ2

q’= q+Δ

p’= p-Δ

q’= q+Δ
q

e’
e 𝛑o,𝛑±
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A multi-step, multi-prong process

Deeply Virtual Meson Production

Exclusive Drell Yan

k+qk
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λe

λe SL

λe

SL  

ST

twist two GPDs 

twist three GPDs 

λe

DVCS



Observables
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Spin Orbit

Orbital angular momentum

Transverse Orbital angular 
momentum
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genuine twist three term

Straight link

Staple link

WW term

from the staple

v ≠0

v=0

We can access all twist three GPDs and test the unique  information in their  qgq structure, e.g. OAM GPD
M. Engelhardt’ talk 

An experimental measurement of twist 3 GPDs from DVCS only 
is sensitive to OAM but it cannot disentangle the difference 
between JM and Ji decompositions



BH

1/6/2020
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…compared to BKM, NPB (2001)



BH-DVCS 
interference

1/6/2020
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Unpolarized
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Rosenbluth separation for Bethe-Heitler contribution 
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G
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Rosenbluth Separated Data for BH-DVCS

(AI/BI)

Hall A data, Defurne
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Comparison with other/BKM based analyses



Impact on 
pressure 

extraction 
through 

dispersion 
relations
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Skewness dependence induced by finite threshold effects

Phys.Rev. D80 (2009) 071501
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The University of Virginia 
is stepping up this truly 
interdisciplinary effort 
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3D Structure of 
the proton

Data 
Science

Quantum 
Information

Education

Outreach

Latttice
QCD
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Strategy: 
1. A fully connected neural 

network maps input 
kinematic data to a vector of 
eight form factors (see 
diagram).

Femtography Imaging with Neural Networks (FINN)

We translate the x-sec. code into TensorFlow

Automatically differentiable

At variance with other efforts we can train CFF extraction 
network with backpropagation and variants of stochastic 
gradient descent. 

1.
2. Use a code developed by      

our Data Analysis Team to 
evaluate the cross sections 
and in terms of the CFFs.

Jake Grigsby



Compton Form factors
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xBj
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Q2



Conclusions and Outlook
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• The EoS of dense matter in QCD can be obtained from first principles, using ab
initio calculations for both quark and gluon d.o.f.

• Gluons are found to dominate the EoS providing a trend in the high density 
regime which is consistent with the constraint from LIGO. 

• We can connect the pressure and energy density in neutron stars with collider 
observables: the GPDs.

• The proposed line of research opens up a new framework for understanding the 
properties of hybrid stars. In the future we hope to set more stringent 
constraints on the nature of the hadron to quark matter transition at zero 
temperature.

These effects are observable! 



1/6/2020 51

• Jefferson Lab’s measurement on the pressure inside the nucleon/hadronic

matter needs to be corroborated by an independent set of measurements

Neutron stars mergers/multimessenger astronomy provide an independent 

constraint 

• To observe, evaluate and interpret Wigner distributions at the subatomic 

level requires stepping up data analyses from the standard methods 

developing new numerical/analytic/quantum computing methods 

Center for Nuclear Femtography Project
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http://www.phys.virginia.edu/

http://www.phys.virginia.edu/

