

Exclusive QCD measurements at LHC

their relevance for EIC

Sunil Bansal
Panjab University, Chandigarh

LHCb

International Workshop on "QCD with Electron-Ion Collider"
4-7 January 2020
IIT Bombay, Mumbai

ALICE

Outline:

- \square LHC (+ its physics goals)
- ☐ Exclusive Processes
- □ Detectors
- ☐ Results

Large Hadron Collider (LHC)

LHC has associated experiments to study the collision outputs

LHC provided rich data with different collision system and energy to explore phase-space to new extreme

Collision System	Approx. Lumi (collision energy)
р-р	150 fb ⁻¹ (13 TeV), 20 fb-1 (8 TeV), 5 fb ⁻¹ (7 TeV) 5 pb ⁻¹ (2.76 TeV) Other low stat data with specific run conditions i.e. reference run, pileup, detector
p-Pb	180 nb ⁻¹ (8 TeV/nucleon) 35 nb ⁻¹ (5 TeV/nucleon)
Pb-Pb	25 nb ⁻¹ (5 TeV/nucleon) 150 μb ⁻¹ (2.76 TeV/nucleon)
Xe-Xe	13 mb ⁻¹ (5.44 TeV/nucleon)

Physics terrain with LHC

- ✓ SM and Higgs Physics
- ✓ Direct & Indirect signature of physics beyond SM
- ✓ Quark-gluon plasma
- ✓ B-Physics
- ✓ Low-x and Forward Physics

Exclusive Processes: incoming particles (one or both) are intact (and usually pass through undetected), interactions happen between radiated particles; t-channel exchange.

Exclusive Processes: incoming particles are intact (and usually pass through undetected), interactions happen between radiated particles; t-channel exchange of a colorless objects such as pomeron, photons

- QED "standard candle" process.
- Test of QCD, hadron spectroscopy.
- Sensitive to PDF at low-x

- Access to scalar and tensor glueballs.
- Constraining (indirectly) BSM phase-space

Need excellent central and forward detectors

CMS

- ✓ HF, CASTOR add in forward acceptance but with limitations
- ✓ CT-PPS recent addition to tag scattered protons.

ATLAS

ALICE

LHCb

Forward Physics and LHC acceptance

Measurement of exclusive processes require;

- ✓ tagging of proton (limited availability of detectors)
- ✓ look for gap (small activity)

Measurements covered

- Light-By-Light Scatterings
- Exclusive J/ ψ production (other measurements of low mass resonances are not covered)
- Exclusive dilepton (low and high mass) production (with and without proton-tagging)

• Measurements sensitive to gluons saturation (BFKL vs DGLAP)

Disclaimer: this talk contains only selected results

- Light-by-light ($\gamma\gamma \rightarrow \gamma\gamma$) scattering
 - Forbidden at tree-level
 - Tested indirectly in electron/muon g-2 measurements
 - Another examples:
 Delbruck scattering and
 photon splitting processes
- This reaction is accessible in Pb+Pb collisions at the LHC
 - Cross-section scales ~with Z⁴
 - Initial photon-photon system has very soft p_T (< 0.1 GeV)
- At high energies, proposed as a clean channel to study:
 - Anomalous gauge couplings
 - Contributions from BSM particles

Simple event topology

✓ Back-to-Back photons: $E_T > 3$ (2) GeV $p_T^{\gamma\gamma} < 2$ (1) GeV Acc. < 0.01

- ✓ Veto on Extra activity:
 - No tracks with $p_T > 0.2 \text{ GeV}$
 - No calorimeter tower above noise threshold

Experiment	Significance Observed (Expected)	Measured Cross-section (SM pred.)
ATLAS	8.2 (6.2) <i>σ</i>	$78 \pm 13 \text{ (stat.)} \pm 7 \text{ (syst.)} \pm 3 \text{ (lumi) nb}$ (50 ± 5 nb)
CMS	4.1 (4.4) σ	$120 \pm 46 \text{ (stat.)} \pm 28 \text{ (sys)} \pm 4 \text{ (th.)} \text{ nb}$ (138 \pm 14 nb)

PbPb 390 μb⁻¹ (5.02 TeV)

Axion-like particles

(see e.g. Knapen et al., PRL 118 (2017) 171801)

Constrained additional phase-space at low mass (5-90 GeV)

Ref.:

<u>Nature Physics</u> 13, 852–858(2017) PRL 123, 052001 (2019) <u>PLB</u> 797, 134826 (2019)

Exclusive J/ ψ

- Exclusively two muon events
- ✓ Exclusivity conditions
 - Herschel detector (LHCb)
 - Veto on the V0A, ADA, ADC (ALICE)
- ✓ Cross-section falls at forward rapidities, reproduced by NLO calculations
- ✓ None of the calculation equally describe the central and forward measurements; indicate scope of improvements.

01/06/2020

16

Exclusive J/ψ

- ✓ Photoproduction cross-section as a function of W (γp energy), explores kinematic range 1-2 TeV
- ✓ Models provide good description at low W but fails at high W.

W varies with gluon density

There are many other results with different system and resonances not discussed here

Exclusive dilepton

p p p

- ✓ Dilepton events with mass off Z-peak
- ✓ Exclusivity conditions: track veto & acoplanarity cut
- ✓ Single- and double dissociation background is irreducible: estimated with template fit.

PLB 777 (2018), 303-323 PLB 749 (2015) 242-261 JHEP 01 (2012) 52

Exclusive dilepton

p p p

✓ Measured exclusive dilepton cross-section below the Z-peak; underestimated by simulations

- ✓ Absorptive Correction factor increases with mass.
- ✓ Finite size parameterization correctly describe the measurements but SuperChic2 mis-model by 10-20%

Exclusive WW

- $\checkmark \gamma \gamma \rightarrow$ WW production gives a handle to measure aQGC
- \checkmark e + μ final state is experimentally clean final state
- ✓ Exclusivity condition is met with veto on extra tracks.

- ✓ First evidence of $\gamma\gamma$ → WW with 3.4 σ consistent with SM predictions.
- ✓ Used to constrain aQGC parameter space.

JHEP 1608 (2016) 119 PRD 94 (2016) 032011

Exclusive dilepton (CT-PPS)

CT-PPS detects scattered proton at ~200 m from interaction point: interesting possibility to look for actual exclusive processes (with medium to high mass)

* Low mass coverage need special run with high β* (limited data available)

Ref.: *JHEP 07 (2018) 153*

Exclusive dilepton (CT-PPS)

Exclusive selection:

- track veto (CMS only)
- proton-tagging (CMS + CT-PPS)

Fractional Momentum loss

$$\xi(\ell^+\ell^-) = rac{1}{\sqrt{s}} \left[p_{
m T}(\ell^+) {
m e}^{\pm \eta(\ell^+)} + p_{
m T}(\ell^-) {
m e}^{\pm \eta(\ell^-)}
ight]$$

Exclusive dilepton (CT-PPS)

- 12 events have $\xi(\mu\mu)$ consistent with RP acceptance³ and matching with the proton kinematics
- 8 events have $\xi(ee)$ consistent with RP acceptance and matching with the proton kinematics
- Background: $1.49 \pm 0.07 (\text{stat}) \pm 0.53 (\text{syst}) \ \mu \mu$; $2.36 \pm 0.09 (\text{stat}) \pm 0.47 (\text{syst})$ ee
- ullet Combined events $>5.1\sigma$ over background

Jets Correlations

Mueller-Navelet jets (Forward-Backward jets): sensitivity to shower evolution and BFKL/DGLAP at larger rapidity gap

24

Gluon density with CASTOR

CASTOR: very forward $(-6.6 < \eta < -5.2)$

calorimeter, (no tracking)

✓ Can explore very low $x \sim 10^{-5} - 10^{-6}$

✓ But limited availability

✓ Results on particle production/ correlations, jet cross-section

HF-calorimeter

HIJING (DGLAP with shadowing effect) gives best description; other fails by a factor 2 at higher energies

No clear support/rejection of BFKL

Context with EIC

- ✓ LHC explore low-x phase space upto 10⁻⁶ with range of collision energies and system.
 - Collective behavior at large multiplicities → gluon saturation
 - Azimuthal anisotropy and correlations as flow distributions which increases with PbPb system
 - Exclusive productions with the usage of forward detectors
- ✓ EIC will complement LHC with new collision system eA.
- ✓ Clean and controlled environment to extract x and Q²
- ✓ Forward detectors of EIC can explore the phase-space uncovered by the limitation of the LHC experiments

Summary & Outlook

Electron-Ion

- LHC: rich dataset for extensive physics programs including low-x measurements
- A flavor of the LHC physics program on the exclusive processes is presented
- > Looking forward to all success for EIC
 - → to have robust understanding of nucleon and nuclei

Thanks!!