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Introduction



Overview

• Probing 3D structure
• Light Cone Quark Model (LCQM)
• π(K ) Distribution Amplitudes (DAs)
• π(K ) Parton Distribution Functions (PDFs)
• π(K ) Generalized Parton Distributions (GPDs)
• π(K ) Transverse Momentum Distributions (TMDs)
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Probing 3D Structure



• Form factors describe the transverse localization of partons in a fast moving nucleon, irrespective of their
longitudinal momenta.

• Parton densities provides the probability to find partons of a given longitudinal momentum fraction x of the

parent nucleon with transverse resolution 1
Q , no information on the transverse position of partons is

accessible.
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Pion and Kaon structure at EIC



• Understanding the origin and dynamics of hadron structure and
in turn that of atomic nuclei is a central goal of nuclear physics.
• An EIC is the ultimate machine like CT scanner for atoms.
• EIC can provide greater insight into the nucleon structure by fa-

cilitating multi-dimensional maps of the distributions of partons
in space,momentum,spin,and flavor.
• Pions having small mass as compared to other hadrons and can

propagate over distances significantly larger than the typical
hadronic scale.
• They are critical in generating the force that binds neutrons

and protons within nuclei,but also appear to greatly influence
the properties of isolated nucleons.
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• No understanding of matter is complete without a detailed ex-
planation of the role of pions. It is thus crucial to expose the
role played by pions in nucleon structure.
• In addition to this, kaons also play very special role in the mass

budget of pion and proton in QCD.
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Light Cone Quark Model (LCQM)



• The LCQM finds application in QCD low-scale regime.
• The LCQM is successful in explaining electromagnetic form fac-

tors of the pion and kaon and is consistent with the experimen-
tal data.

B-Q Ma, Z. Phys. A 345
(1993) 321.

Bo-Wen Xiao, EPJ A 15 (2002)
523.
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• The charge radii and decay constant are well predicted and
consistent with experimental data.
• The hadron eigenstate in connection with multi-particle Fock

eigenstates |n〉 is

|M(P+,P⊥, Sz )〉 =
∑
n,λi

∫ n∏
i=1

dxid2k⊥i√xi 16π3 16π3δ(1−
n∑

i=1
xi )δ(2)(

n∑
i=1

k⊥i )

× |n : xiP+, xiP⊥ + k⊥i , λi〉ψn/M(xi , k⊥i , λi ),

• The light-cone wavefunction in LCQM is

ψF
Sz (x , k⊥, λ1, λ2) = ϕ(x , k⊥)χF

Sz (x , k⊥, λ1, λ2)
ϕ(x , k⊥) → momentum space wavefunction

χF
Sz (x , k⊥, λ1, λ2) → spin wavefunction
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• The light-cone wavefunction of the pion (or kaon) can be ob-
tained through the transformation of the SU(6) instant form
wavefunction using Melosh-Wigner rotation.
• For the pseudo-scalar meson, the spin wavefunction is

χT = χ↑1χ
↓
2 − χ

↑
2χ
↓
1√

2

where χ↑,↓i are the two component Pauli spinors.
• One can relate the light-cone spin states |J , λ〉F and instant-

form spin states |J , s〉T as

|J , λ〉T =
∑

UJ
sλ|J , s〉T

where UJ is the Melosh-Wigner rotation operator.
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• The final spin wavefunction for the pseudoscalar meson
becomes

χP(x , k⊥) =
∑
λ1λ2

κF
Sz χ

λ1
1 (F ) χλ2

2 (F )

where Sz and λ are the spin projections and quark helicity
respectively.

κF
0 (x , k⊥, ↑, ↓) = ω1ω2[(q+

1 + m1)(q+
2 + m2)− q2

⊥]/
√

2,
κF

0 (x , k⊥, ↓, ↑) = −ω1ω2[(q+
1 + m1)(q+

2 + m2)− q2
⊥]/
√

2,
κF

0 (x , k⊥, ↑, ↑) = ω1ω2[(q+
1 + m1)qL

2 − (q+
2 + m2)qL

1 ]/
√

2,
κF

0 (x , k⊥, ↓, ↓) = ω1ω2[(q+
1 + m1)qR

2 − (q+
2 + m2)qR

1 ]/
√

2

where q+
1 = q0

1 + q3
1 = x1M, q+

2 = q0
2 + q3

2 = x2M, and
k⊥ = q⊥, with

M2 = m2
1 + k2

⊥
x1

+ m2
2 + k2

⊥
x2

.
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• The momentum space wavefunction are adopted using
Brodsky-Huang-Lepage (BHL) prescription.
• For pion

ϕπ(x , k⊥) = Aπ exp[− 1
8β2

π

k2
⊥ + m2

x(1− x) ]

• For Kaon

ϕK (x , k⊥) = AK exp[−
k2
⊥+m2

1
x + k2

⊥+m2
2

1−x
8β2

K
− (m2

1 −m2
2)2

8β2
K

(
k2
⊥+m2

1
x + k2

⊥+m2
2

1−x

) ]

-G.P. Lepage, S.J. Brodsky,PRD 22, 2157(1980)
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• The two-particle Fock state expansion for pion(kaon) can be
described in terms of LCWFs as

|π(K )(P+,P⊥, Sz )〉 =
∫ d2k⊥dx

2(2π)3 [ψπ(K)
Sz

(x , k⊥, ↑, ↑)|xP+, k⊥, ↑, ↑〉

+ ψ
π(K)
Sz

(x , k⊥, ↑, ↓)|xP+, k⊥, ↑, ↓〉

+ ψ
π(K)
Sz

(x , k⊥, ↓, ↑)|xP+, k⊥, ↓, ↑〉

+ ψ
π(K)
Sz

(x , k⊥, ↓, ↓)|xP+, k⊥, ↓, ↓〉]

• The constituent quark masses and harmonic scale (β) are two
input parameters

B. -Q. Ma, Z. Phys. A 345, 321 (1993)
W. Qian, and B.-Q. Ma, Eur. Phys. J. C 65, 457 (2010)

Meson Mass in GeV β in GeV A
π (ud) m = 0.2 0.410 44.236
K (us) m1 = 0.2, m2 = 0.556 0.405 74.033
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Distribution Amplitudes



DAs

• DAs gives the momentum distribution of meson constituent viz.
quark (or anti-quark) in longitudinal direction and represent the
coupling of quark-antiquark in the meson.
• The representation of the leading-twist DAs is defined through

the correlation

〈0|Ψ̄(z)γ+γ5Ψ(−z)|P+(P)〉 = ik+fP
∫ 1

0
dxe i(x−1/2)k+z−φ(x)

∣∣∣
z+,z⊥=0

-Y. Li, P. Maris, and J. P. Vary, PRD 96, 016022 (2017).
• In this work, DAs in terms of LCWFs

fπ(K)

2
√

2Nc
φ(x) = 1√

2x(1− x)

∫ d2k⊥
16π3 [ψπ(K)

0 (x , k⊥, ↑, ↓)−

ψ
π(K)
0 (x , k⊥, ↓, ↑)]
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Pion

Kaon
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• We have also taken into account the evolution of pion DA.
The leading order evolution is

φπ(x , µ) = 6x(1− x)
∞∑

n=0
C

3
2n (2x − 1)an(µ),

-E. R. Arriola, PRD 66, 094016 (2002).
with

an(µ) = 2(2n + 3)
3(n + 1)(n + 2)

(
α(µ)
α(µ0)

) γ
(0)
n

2β0
∫ 1

0
dxC

3
2n (2x − 1)φπ(x , µ0),

where C
3
2n (2x − 1) is a Gegenbauer polynomial and n contains

only the even values i.e. n = 0, 2, 4, ..., and the factor α(µ)
defines the strong coupling constant and is defined as

α(µ) = 4π
β0ln( µ2

Λ2
QCD

)
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• The factor γ
(0)
n

2β0
defines the anomalous dimensions, we have

γ(0)
n = −2cF

(
3 + 2

(n + 1)(n + 2) − 4
n+1∑
m=1

1
m

)
; with cF = 4

3 ,

and

β0 = 11
3 cA −

2
3nF ,

where cA = 3 and nF corresponds to the number of active
quarks.
• The relation between moments of DA and its Gegenbauer

coefficients are given as

〈zn〉 =
∫ 1

0
dx zn φ(x , µ),

where z can be ξ = (2x − 1) or x−1.
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ϕπ (x,μ0)

Asymptotic Result

ϕπ (x,μ) at μ2=10 GeV2

E791 result
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QCD evolution at energy scale µ2 = 10 GeV 2 with initial scale
µ2

0 = 0.246 GeV 2.
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ϕK (x,μ0)

Asymptotic Result

ϕK (x,μ) at μ2=10 GeV2
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QCD evolution at initial scale µ2
0 = 0.194 GeV 2.
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• Comparison of first two possible moments and inverse
moment in this model with the available theoretical results for
pionic DA.

Pion DA µ [GeV] 〈ξ2〉 〈ξ4〉 〈x−1〉

Asymptotic ∞ 0.200 0.085 3.00
LCQM (This model) 104 0.197 0.0836 2.974
LCQM (This model) 1, 2 0.189, 0.192 0.077, 0.079 2.855, 2.894

LF Holographic (B = 0) 1, 2 0.180, 0.185 0.067, 0.071 2.81, 2.85
LF Holographic (B � 1) 1, 2 0.200, 0.200 0.085, 0.085 2.93, 2.95

LF Holographic ∼ 1 0.237 0.114 4.0
Platykurtic 2 0.220+0.009

−0.006 0.098+0.008
−0.005 3.13+0.14

−0.10
LF Quark Model ∼ 1 0.24[0.22] 0.11[0.09]

Sum Rules 1 0.24 0.11 -

Renormalon model 1 0.28 0.13 -

Instanton vacuum 1 0.22, 0.21 0.10, 0.09 -

NLC Sum Rules 2 0.248+0.016
−0.015 0.108+0.05

−0.03 3.16+0.09
−0.09

Sum Rules 2 0.343 0.181 4.25
Dyson-Schwinger[RL,DB] 2 0.280, 0.251 0.151, 0.128 5.5, 4.6

Lattice 2 0.28(1)(2) - -

Lattice 2 0.2361(41)(39) - -

Lattice 2 0.27± 0.04 - -
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• Comparison of first four possible moments and inverse
moment in this model with the available theoretical results for
kaonic DA.

Kaon DA µ [GeV] 〈ξ1〉 〈ξ2〉 〈ξ3〉 〈ξ4〉 〈x−1〉

Asymptotic ∞ 0 0.200 0 0.085 3.00
LCQM (This model) 104 0.0093 0.191 0.005 0.0796 2.971
LCQM (This model) 1, 2 0.02, 0.0175 0.169, 0.176 0.011, 0.009 0.065, 0.069 2.838, 2.881
Holographic (B = 0) 1, 2 0.055, 0.047 0.175, 0.180 0.021, 0.018 0.062, 0.067 2.55, 2.62
Holographic (B � 1) 1, 2 0.094, 0.081 0.194, 0.195 0.039, 0.034 0.080, 0.081 2.60, 2.66

Lattice 2 0.036(2) 0.26(2) - - -

LF Quark Model ∼ 1 0.06[0.08] 0.21[0.19] 0.03[0.04] 0.09[0.08] -

Sum Rules 1 0.036 0.286 0.015 0.143 3.57
Dyson-Schwinger[RL,DB] 2 0.11, 0.040 0.24, 0.23 0.064, 0.021 0.12, 0.11 -

Instanton vacuum 1 0.057 0.182 0.023 0.070 -
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Parton Distribution Functions



PDFs

• PDFs were introduced by Feynman in 1969.
• PDFs f (x) imparts an information about the probability of find-

ing a parton carrying a longitudinal momentum fraction x inside
the hadron. At fixed light-front time, the PDF can be expressed
as

f P(x) = 1
2

∫ dz−
4π e ik+z−/2〈P+(P); S|Ψ̄(0)γ+Ψ(z−)|P+(P); S〉|z+=z⊥=0,

• The overlap form of PDF is defined by putting the pion (kaon)
states

f π(K)(x) =
∫ d2k⊥

16π3
[
| ψπ(K)

0 (x , k⊥, ↑, ↑) |2 + | ψπ(K)
0 (x , k⊥, ↑, ↓) |2

+ | ψπ(K)
0 (x , k⊥, ↓, ↑) |2 + | ψπ(K)

0 (x , k⊥, ↓, ↓) |2
]
.
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Pion

Kaon
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Parton distribution function f (x) for pion and kaon.
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QCD evolution for the pion PDF in LCQM. The analysis is done
with using the Higher Order Perturbative Parton Evolution Tool

(HOPPET) kit to numerically solve the NNLO DGLAP equations.
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Generalized Parton Distributions



GPDs

• PDFs f (x) imparts an information about the probability of find-
ing a parton carrying a longitudinal momentum fraction x inside
the hadron.
• But how partons are distributed in the plane trans-

verse to the motion of hadron?
This missing information was then compensated in generalized

parton distributions (GPDs).
• An essential tool to investigate hadron structure is the study of

DIS, where individual quarks and gluons are resolved.

- arXiv:1212.1701. 24



• GPDs have three support regions: −1 ≤ x ≤ −ξ, −ξ ≤ x ≤ ξ

and ξ ≤ x ≤ 1.
• GPDs for the pion and kaon are studied in the LCQM.
• However, we restrict ourself to only DGLAP region i.e. ξ <

x < 1.
• One can define the correlation to evaluate the unpolarized GPD

H

HP(x , 0, t) = 1
2

∫ dz−
4π eixP+z−/2

× 〈P+(P ′)|Ψ̄(0)γ+Ψ(z)|P+(P)〉|z+=z⊥=0.
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• Unpolarized quark GPD of the pion in terms of overlap of light-cone
wavefunctions

Hπ(x, 0, t) =

∫
d2k⊥
16π3

[(
(xM′π + m)((1− x)M′π + m)− k′2⊥

)(
(xMπ + m)((1− x)Mπ + m)−

k2
⊥

)
+
(
M′π + 2m

)(
Mπ + 2m

)]ϕπ∗(x, k′⊥)ϕπ(x, k⊥)

ω′1ω
′
2ω1ω2

with

Mπ =

√
m2 + k2

⊥
x(1− x)

, M′π =

√
m2 + k′2⊥
x(1− x)

,

• For the case of kaon, we have

HK (x, 0, t) =

∫
d2k⊥
16π3

[(
(xM′K + m1)((1− x)M′K + m2)− k′2⊥

)(
(xMK + m1)((1− x)MK +

m2)− k2
⊥

)
+
(
M′K + m1 + m2

)(
MK + m1 + m2

)]ϕK∗(x, k′⊥)ϕK (x, k⊥)

ω′1ω
′
2ω1ω2

with

MK =

√
m2

1 + k2
⊥

x
+

m2
2 + k2

⊥
1− x

,

M′K =

√
m2

1 + k′2⊥
x

+
m2

2 + k′2⊥
1− x

,
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Pion and Kaon GPD Hπ,k(x , 0, t).
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Transverse Momentum Distributions



TMDs

• TMDs provide the distribution of partons in momentum space
and are functions of longitudinal momentum fraction and trans-
verse momentum.
• TMDs are sensitive to correlations between the motion of par-

tons and their spin,as well as the spin of the parent hadron.
• These correlations can arise from spin-orbit coupling among the

partons,about which very little is known to date.
• To evaluate the pion and kaon TMDs, the unintegrated quark-

quark correlator is

ΦP(x , k⊥; S) = 1
2

∫ dz−
2π

d2z⊥
(2π)2 e ik.z/2

〈P+(P), S|Ψ̄(0)γ+Ψ(z)|P+(P), S〉|z+=0

-S. Meissner et. al., PRD 76 034002 (2007).
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• In the present calculations, unpolarized pion and kaon TMDs
can be obtained by the overlap of LCWFs

f π(K)
1 (x , k2

⊥) = 1
16π3

[
| ψπ(K)

0 (x , k⊥, ↑, ↑) |2 + | ψπ(K)
0 (x , k⊥, ↑, ↓) |2

+ | ψπ(K)
0 (x , k⊥, ↓, ↑) |2 + | ψπ(K)

0 (x , k⊥, ↓, ↓) |2
]
.

• For pion, the TMD evaluated is

f π1 (x , k2
⊥) = 1

16π3

[(
(xMπ + m)((1− x)Mπ + m)− k2

⊥
)2 +

(
Mπ + 2m

)2
]
| ϕπ(x , k⊥) |2

ω2
1ω

2
2

,

• For kaon, we have

f K
1 (x , k2

⊥) = 1
16π3

[(
(xMK + m1)((1− x)MK + m2)− k2

⊥
)2 +

(
MK + m1 + m2

)2
]
| ϕK (x , k⊥) |2

ω2
1ω

2
2
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Unpolarized TMD xf1(x , k2
⊥) as a function of x and k2

⊥ for pion,
and kaon.
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Pion TMDs in momentum space
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Kaon TMDs in momentum space
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TMD Evolution

• Unpolarized TMD evolution is factorized in the framework of
Collins-Soper-Sterman (CSS) formalism

J. C. Collins et. al., NPB 250, 199 (1985).
• Includes the perturbative effects in the larger energies and mo-

mentum transfer regimes.
• TMD evolution is executed in b⊥ space by taking the Fourier

transformation of f1(x , k2
⊥)

f̃1(x ,b2
⊥) =

∫ ∞
0

dk⊥k⊥J0(k⊥b⊥)f1(x , k2
⊥),

f̃1(x ,b2
⊥;µ) = f̃1(x ,b2

⊥)R(µ, µ0,b⊥) e−gk (b⊥)ln µ
µ0 ,

where gk(b⊥) is the Sudakov factor and TMD evolution factor
R(µ, µ0,b⊥) is

R(µ, µ0,b⊥) = exp
(

ln µ

µ0

∫ µb

µ

dµ′
µ′

γK (µ′) +
∫ µ

µ0

dµ′
µ′

γF
(
µ′,

µ2

µ′2
))
,
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• Pion TMD is evolved from the model scale µ2
0 = 0.246GeV 2

whereas kaon TMD is from µ2
0 = 0.194GeV 2.

(a)

μ2=1

μ2=10

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

k⊥

k
⊥
f
1
(x
=
0.
5)

(b)

μ2=1

μ2=10

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

f
1

Unpolarized TMD evolution. Red line is for kaon and black is for
pion.
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Conclusions

• Quark distributions in pion and kaon is studied from the overlap
of LCWFs
• LCWFs are obtained from instant-form wavefunctions through

the Melsoh-Wigner rotation.
• DAs for pion and kaon under QCD evolution are in good agree-

ment with asymptotic DA result.
• NNLO DGLAP evolution has been done for pion PDF. Results

are in good agreement with FNAL-E-615 experimental results.
• Pion and kaon GPDs obtained from the overlap of LCWFs in

DGLAP region (providing the spatial distribution of partons).
• Pion and kaon TMDs are also obtained from the overlap of

LCWFs (providing the momentum tomography).
• TMDs evolution has been done to includes the perturbative

effects.
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Thank you!
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