Measurement of the CP Violating Phase φ_s in $B_s^0 \rightarrow J/\psi h^+h^-$ Decays at LHCb Jennifer Zonneveld on behalf of the LHCb Collaboration LHCC 2019, CERN, Geneva (Switzerland)

CP Violating Phase φ_s

The decays $B_s^0 \rightarrow J/\psi K^+ K^-$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ can proceed via the same decay diagram. Being a neutral particle, the B_s^0 meson can **oscillate** into its anti-particle.

$B_s^0 \rightarrow J/\psi K^+K^-$ 2015 and 2016 Analysis

Determination of φ_s , Γ_s , the average width in the B_s^0 system, and $\Delta\Gamma_s$, the decay width difference of the light (L) and heavy (H) B_s^0 mass eigenstates. A **multidimensional fit** is performed to the decay time and the three helicity angles to **disentangle** the *CP*-even and *CP*-odd components.

$ \cdot$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot	
	وملدر
LHCb Unotficial λ \sim 3000 F	

 J/ψ

Interference between direct decay and via oscillation gives rise to the CP violating phase φ_s , which is precisely predicted by the Standard Model:

 $\varphi_s^{SM} \approx -2\beta_s \equiv -2\arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = -0.037 \pm 0.001 \text{ rad [1]}$ However this value could be significantly affected by **New Physics**, which makes it experimentally very interesting. The current World Average is in agreement with the Standard Model and is dominated by LHCb:

$B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ 2015 and 2016 Analysis

Access to φ_s and Γ_H , the decay width of the heavy B_s^0 mass eigenstate, by fitting **simultaneously** the *CP*-even and *CP*-odd decay amplitudes to decay time, the three helicity angles and $m(\pi^+\pi^-)$. [6]

$B_s^0 \rightarrow J/\psi h^+ h^-$ Run 1 Analyses

Time-dependent amplitude analysis of **3 fb⁻¹** of Run 1 data using $B_s^0 \rightarrow J/\psi K^+K^-$ [3, 4] and $B_s^0 \rightarrow J/\psi \pi^+\pi^-$ [5] leads to a combined result of:

 $\varphi_s = 0.001 \pm 0.037$ rad **Flavour tagging, decay time resolution, decay time acceptance** and **angular acceptance** are essential ingredients for this precise result.

Flavour Tagging

Expected Precision

- $B_s^0 \rightarrow J/\psi K^+K^-$ statistical uncertainty $\sigma_{stat} \sim 0.041$ rad and including Run 1 $\sigma_{stat} \sim 0.030$ rad
- $B_s^0 \to J/\psi \pi^+ \pi^-$ statistical uncertainty $\sigma_{stat} \sim 0.060$ rad and

To determine φ_s it is crucial to properly **tag** the *b* quark flavour at production. The OS and SS taggers are exploited to determine the **effective tagging efficiency**:

 $\varepsilon_{eff} = \varepsilon_{tag} (1 - 2\omega)^2$ Analysis of **1.9 fb⁻¹** 2015 and 2016 data determines the effective tagging efficiency to be roughly 5% for both $B_s^0 \rightarrow J/\psi K^+ K^$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$.

- including Run 1 $\sigma_{stat} \sim 0.044$ rad [6]
- LHCb sensitivity is expected to reach < 0.003 rad with Phase-II Upgrade [7]

[1] J. Charles *et al.*, Current status of the Standard Model CKM fit and constraints on ΔF = 2 New Physics, *Phys. Rev.* D 91, p. 073007 (2015)
[2] Y. Amhis *et al.*, Averages of *b*-hadron, *c*-hadron, and τ-lepton properties as of summer 2016 (2016), *Eur. Phys. J.* C77 (2017)
[3] The LHCb Collaboration, R. Aaij *et al.*, Precision measurement of *CP* violation in B⁰_s → J/ψ K⁺K⁻ decays, *Phys. Rev. Lett.* 114, p. 041801 (2015)
[4] The LHCb Collaboration, R. Aaij *et al.*, Resonances and *CP* violation in B⁰_s and B⁰_s → J/ψ K⁺K⁻ decays in the mass region above the φ(1020), *JHEP* 08 037 (2017)
[5] The LHCb Collaboration, R. Aaij *et al.*, Measurement of the *CP*-violating phase φ_s in B⁰_s → J/ψ π⁺π⁻ decays, *Phys. Lett.* B736 186 (2014)
[6] LHCb-PAPER-2019-003, *in preparation*[7] The LHCb Collaboration, R. Aaij *et al.*, Physics case for an LHCb Upgrade II, CERN-LHCC-2018-027 (2018)