

Study of the decay $B^0 \rightarrow \rho^0 K^*(892)^0$

María Vieites Díaz on behalf of the LHCb collaboration IGFAE-Universidade de Santiago de Compostela

2. The LHCb detector

Single arm forward spectrometer, covering $2 < \eta < 5$. Run-1 conditions:

1. The $B^0 \rightarrow \rho^0 K^*(892)^0$ decay

• B^0 meson decay into two **vector resonances** reconstructed as: $B^0
ightarrow (\pi^+\pi^-) (K^+\pi^-)$

• Decay proceeding via the **three interfering diagrams**:

 \rightarrow Sensitivity to \mathcal{CP} -violating effects comparing B^0 and \overline{B}^0 decay rates. • Angular phenomenology:

Polarisation fractions and

True&Fake Triple Products³ $\mathcal{A}_T^B = f_\perp f_{(L,||)} \sin(\delta_\perp - \delta_{(L,||)})$ $\mathcal{A}_{\mathsf{T}\text{-}true} = rac{\mathcal{A}_T^B - \mathcal{A}_T^B}{2}$

- \rightarrow Input to " $B \rightarrow \pi K$ " and polarisation *puzzles*.
- \rightarrow Theoretical predictions available in pQCD and QCDF frameworks.
- [1] M. Beneke, J. Rohrer, and D. Yang, Branching fractions, polarisation and asymmetries of $B \rightarrow VV$ decays, Nucl. Phys. B774 (2007) 64.

[2] Z.-T. Zou et al., Improved estimates of the $B(s) \rightarrow VV$ decays in perturbative QCD approach, Phys. Rev. D91 (2015) 054033.

[3] M. Gronau, J. L. Rosner, Triple Product asymmetries in K, D(s) and B(s) decays, Phys. Rev. D 84, 096013.

4. Amplitude analysis method

 $B \rightarrow (p_1 p_2)(p_3 p_4)$ decays can be fully described in terms of three helicity angles $(\theta_{\pi\pi}, \theta_{K\pi}, \phi)$ and two invariant masses $(m_{\pi\pi}, m_{K\pi})$

Ref.: LHCb collaboration, Alves Jr., A. A. et al., The LHCb detector at the LHC. J. Instrum. 3 (2008) S08005.

3. Event selection

Data sample: LHCb Run-1 data, corresponding to $3fb^{-1}$ at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV for 2011 and 2012, respectively.

Events **selected** by requirements on: Trigger on final state hadrons + Particle identification + Invariant mass windows + Multivariate analysis.

Background subtracted sample obtained from a fit to the 4-body invariant mass spectrum:

Using the **isobar** model to build the **decay rate**:

 $\frac{d^{5}\Gamma}{d\cos\theta_{\pi\pi}d\cos\theta_{K\pi}d\phi dm_{\pi\pi}dm_{K\pi}} \propto |\mathcal{A}_{T}(\theta_{\pi\pi},\theta_{K\pi},\phi,m_{\pi\pi},m_{K\pi})|^{2} \equiv$ $\left|\sum_{i=1}^{N} A_i \cdot g_i(\cos\theta_{\pi\pi}, \cos\theta_{K\pi}, \phi) \cdot M_i(m_{\pi\pi}, m_{K\pi})\right|^2$

Key features:

- Fit with 14 contributions: each VV wave contributes with 3 amplitudes $(0, ||, \perp)$ and any S with one (relative strengths measured w.r.t. $B^0 \to \rho(K^+\pi^-)$.

$N_{B^0_s o K\pi\pi\pi}$	119 ± 19	68 ± 17
N_{Comb}	1120 ± 52	930 ± 47

• B^0 and B^0_s PDF: Hypatia⁵ function.

• Combinatorial background: exponential shape.

3. Obtain the signal weights using the $sPlot^6$ technique.

[4] LHCb collaboration, Measurement of CP asymmetries and polarisation fractions in $B_s^0 \to K^{*0}\overline{K}^{*0}$ decays, JHEP 07 (2015) 166. [5] D. Martínez Santos and F. Dupertuis, Mass distributions marginalized over per-event errors, Nucl. Instrum. Meth. A764 (2014) 150. [6] M. Pivk and F. R. Le Diberder, *sPlot: A statistical tool to unfold data distributions*, Nucl. Instrum. Meth. A555 (2005) 356. Ref. LHCb collaboration, Study of the $B^0 \rightarrow \rho(770)^0 K^*(892)^0$ decay with an amplitude analysis of $B^0 \rightarrow (\pi^+\pi^-)(K^+\pi^-)$ decays, arXiv:1812.07008.

5. Projections of the fitted model (B^0 sample)

