CompassUT: study of a GPU track reconstruction for LHCb upgrades Placido Fernandez Declara on behalf of the LHCb collaboration University Carlos III of Madrid and CERN

present a fast, data-oriented GPU We tracking algorithm, CompassUT, as a potential option to cope with the expected throughput of 40Tbit/s for LHCb upgrade. • The raw input data is decoded in parallel, optimized for GPU architecture.

• Hits are sorted by X and Y into sector

UT tracking:

- Reconstruct charged particle trajectories that cross the UT
- Match a VELO track with UT hits to create a VELO+UT track
- Tracks are slightly bent by the magnetic field, introducing

groups

• The tracking is implemented for minimal memory footprint, reduced branching, and data oriented.

• The resulting performance increase is shown for 3 different GPUs with the impact on physics performance for different configurations.

UT plane window ranges

multiplicity to the more calculations.

4-layer tracking station in front of magnet

UT decoding and CompassUT tracking

UT decoding (5 kernels):

- Calculate number of hits to pre-allocate memory
- 2. Get offsets for efficient access using prefix sum
- 3. Sort hits into X regions defined by sectors
- Calculate the permutations needed to sort by Y 4.
- 5. Decode and sort by Y into sector groups

Physics and computing performance results

	Number of	Number of	Long tracks		Fake rate
-	sectors	candidates	reco. efficiency clone rate		
-	1 sector	2	79.70%	0.35%	10.09%
		4	80.52%	0.32%	9.83%
		16	80.99%	0.34%	9.48%
	$3 \ { m sectors}$	2	93.67%	0.37%	9.89%
		4	94.66%	0.36%	9.59%
		16	95.21%	0.38%	9.22%
		2	94.20%	0.37%	9.90%
	5 sectors	4	95.19%	0.36%	9.60%

0.37%95.74%9.23%

The impact on the physics performance is shown here. Long tracks achieve > 95% reconstruction efficiency with low clone and fake rate. The version using just 1 sector is discarded due to low physics performance. The computing performance differences is greater between the consumer cards 1080 Ti and 2080 Ti, compared to the server-grade V100 despite their price differences. Several configurations between 3 and 5 sectors offer similar performance with comparable physics efficiency.

References

[1] LHCb collaboration, Framework TDR for the LHCb Upgrade: Technical Design Report, CERN-LHCC-2012-007. LHCb-TDR-12, 2012. [2] E. Bowen, B. Storaci, VeloUT tracking for the LHCb Upgrade, CERN-LHCb-PUB-2013-023. LHCb-INT-2013-056, CERN, Geneva, 2014. [3] LHCb Collaboration, Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in flavour physics, and beyond, in the HL-LHC era, Technical Report CERN-LHCC-2017-003, CERN, Geneva, 2017.