
Scheduling algorithms in LHCb’s upgrade
software framework

N. Nolte 1,2, S. Stahl 2

J. Albrecht 1, E. Govorkova 3, C. Hasse 1,2, R. Matev 2, G. Raven 3

1 TU Dortmund, 2 CERN, 3 Nikhef

On behalf of the LHCb Collaboration

LHCb in Run 3 [CERN-LHCC-2018-007. LHCB-TDR-017]

▶ Single arm forward spectrometer specialized on
beauty and charm hadrons

▶ Detector upgrade during LS2 (2018-2020)

▶ From Run 3 onwards:
• purely software based trigger system
• full online reconstruction at 30 MHz

General design choices

Running a 30 MHz software trigger requires a
multithreading friendly framework with low overhead

▶ Functional data processing in form of reentrant and
thread-safe algorithms, explicitly declaring data
dependencies

▶ Parallelization over events

▶ Data and control flow is configured once before event
processing to achieve minimal scheduling overhead
during runtime

▶ Detect unmet dependencies early

▶ Automate dependency resolution
• easier configuration
• less prone to errors
• no production of unused data by construction

HLT control flow

Trigger Decision 

Line 1 

Sel 1GEC

Line 2 

P2  GEC P1 Sel 2 

LHCb’s High Level Trigger (HLT) control flow in a nutshell. Grey arrows
indicate a parent-child relation, red arrows represent order constraints (control
flow edges). The simplest lines comprise a prescale, a global event cut (GEC)

and a selection. The top node decides whether to persist an event.

▶ Composite Nodes (yellow)
• OR / AND / NOT of childrens’ decision
• optional short-circuiting
• may constrain order of child evaluation

▶ Basic Nodes (blue)
• manage single algorithm and keep track of

decision
• execute data dependencies on demand

Preparation for processing - Configuration

Trigger Decision 

Line 1 

GEC

Line 2 

P2 P1 Sel 1 Sel 2

D1 

D2 

D3  D1 

D2 D4 
Execution Order

Ordered list of basic nodes with their data dependencies indicated in
green and their parents indicated in yellow. The GEC is a shared node.

▶ The user configures the desired control and data flow by
defining a set of nodes and algorithm inputs and outputs

▶ An ordered list of data dependencies is constructed for
each basic node by matching inputs and outputs of all
algorithms available

▶ Basic nodes are ordered into a flat list, taking into
account all ordering constraints imposed by composite
nodes and manually by the user

▶ Execution and decision states are prepared for each node
and algorithm

Event processing - Runtime

▶ Iterate over the list of basic nodes
▶ Is the current node requested by any parent node, i.e. is any parent node not yet evaluated? If so:

1. execute its data producers in the right order, if they have not been executed yet
2. execute basic node itself
3. save its decision and notify its parent about the outcome
4. the direct parent evaluates its decision if the execution policy permits it

if short-circuiting is allowed: evaluate as soon as possible
else: evaluate after the last child has been evaluated

5. If evaluated, the parents’ decision is given higher up the chain, continuing recursively from Step 4.

Barrier - Sharing work

▶ Resource intensive work may worth be sharing
▶ Example: Multiple lines select tracks with

some intersection
→ invoke the track fit algorithm only once on

the union of all track selections
▶ This requires optional data dependencies, since

some lines might have retired before
▶ Optional dependencies are not pursued in the

data dependency resolution, otherwise
algorithms might be scheduled unnecessarily

▶ Instead, the barrier introduces additional order
constraints in the configuration step to ensure
that all necessary algorithms ran before
invoking the expensive algorithm

Line 2                                                                                             
                     

Line 1                                                                                             
                     

Filter 1Selection 1 GEC 

Prescale 2 Filter 2 Selection 2GEC 

Prescale 1 

Some Data Expensive AlgNot in Control Flow Barrier

Required data dependencies are displayed as black arrows. The grey, dotted arrows
correspond to optional data dependencies. The ”expensive Alg” needs a

preceeding control flow barrier to make sure all requested selections have run
before it is executed

Technical aspects

▶ The master thread prepares self-contained tasks
(full events) for a threadpool

→ no thread synchronization

▶ Fast runtime polymorphism with C++17’s
std::variant and the corrsponding visitor pattern

▶ Timing:
• no measurable overhead in the current upgrade

HLT1
• less than 1% overhead in a mock upgrade HLT1

with 20 trigger lines running at 30 kHz per
computing node

• less than 2% on a mock upgrade HLT2 with 1000
trigger lines

Outlook

▶ Scheduler implemented as default in the LHCb
upgrade framework.

▶ One can define control flow and write upgrade trigger
lines, which are processed in multiple threads.

▶ Performance overhead needs to be tested in the
realistic environment of HLT1 and HLT2.

▶ Benchmark the bookkeeping overhead of barriers
• Gathering inputs into a union
• Scattering results to each successing algorithm


