Measurement of rare $B \rightarrow \mu^{+}\mu^{-}$ decays with the Phase-2 upgraded CMS detector at the HL-LHC

LHCC 2019

Ozlem Ozcelik on behalf of the CMS collaboration

Bogazici University

ozlem.ozcelik@cern.ch

CMS PAS FTR-18-013

 \rightarrow No significant change observed

 \circ effective lifetime : $(y_s \equiv \tau_{B_s^0} \Delta \Gamma_s/2 \equiv 0.062 \pm 0.006$ and $\tau_{B_s^0}$ $= 1.510 \pm 0.005 \text{ ps}$)

Introduction

The decays are highly suppressed in Standard Model [1] due to

- effective FCNC
- helicity suppressed
- CKM suppressed $|V_{ts}| > |V_{td}|$
- $\rightarrow \mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-) = (3.57 \pm 0.17) \times 10^{-9}$
- $\rightarrow \mathcal{B}(B^0 \rightarrow \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$ (time-integrated measurement)
	- $\delta \Delta \Gamma_s = \Delta_L \Delta_H = 0.082 \pm 0.007$ ps⁻¹
-

$$
\tau_{\mu^{+}\mu^{-}} = \frac{\int_{0}^{\infty} t \langle (\Gamma(B_{s}(t)) \to \mu^{+}\mu^{-}) \rangle}{\int_{0}^{\infty} \langle (\Gamma(B_{s}(t)) \to \mu^{+}\mu^{-}) \rangle} = \frac{\tau_{B_{s}}}{1 - y_{s}^{2}} \left(\frac{1 + 2A_{\Delta\Gamma}y_{s} + y_{s}^{2}}{1 + A_{\Delta\Gamma}y_{s}} \right)
$$
(1)

In SM, only heavy eigenstates decay to dimuons - $A_{\Delta\Gamma} = 1 \to \tau_{\mu^+\mu^-}^{SM} = 1.615$ ps. The decay could receive contributions beyond the SM as $A_{\Delta\Gamma}$ value within whole range [-1, +1].

- Signal : Two unlike-sign global muons fit to a common displaced vertex to reconstruct B candidate. • Background :
- Combinatorial from two uncorrelated semi-leptonic B decays.
- \circ Rare semi-leptonic B decays, e.g. $B^0 \to h\mu + \nu$, where a hadron misidentified as a muon and the neutrino carries away a small amount of energy.
- \circ Two-body hadronic decays, "peaking" background, e.g. $B^0 \to K^+ \pi^-$, when both hadrons misidentified as muons.

- 1. An advanced muon identification algorithm based on BDT, muon BDT, to separate genuine muons from the hadrons that are misidentified as muons.
- 2. A second BDT is used to separate signal events from backgrounds.

Analysis strategy

The background contribution to the $B^0 \to \mu^+\mu^-$ signal yield from the $B^0_s \to \mu^+\mu^-$ and $B^0 \to \pi^-\mu^+\nu$ decays are studied.

Selection :

To extract the signal yield, an unbinned maximum likelihood fit (UML) is performed in bins of the second BDT. For the determination of the BF, a normalization decay channel $B^+ \to J/\psi K^+$ is used. The formula for the BF is :

$$
\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \frac{N_{\text{sig}}}{N_{\text{norm}}} \times f_u / f_s \times \frac{\epsilon_{\text{sig}}}{\epsilon_{\text{norm}}} \tag{2}
$$

Based on the fit results, projection along the proper decay time distribution for the B_s^0 signal events is built with the sPlot technique [2]. 1D binned ML fit to decay time distribution, constrained with resolution and

Figure 3: Normalized isolation variable distributions for the B_s^0 signal for the two pile-up scenarios is shown. The blue distribution represents the case with no pile-up while the red one is for average pile-up of 200 interactions per bunch crossing. In the bottom, the ratio between the PU=0 and the PU=200 distributions is also shown.

efficiency, is used to extract the effective lifetime.

Study of dimuon mass resolution

Figure 1: (left)Mass distributions for $B^0 \to \mu^+ \mu^-$ in the Run-2 and Phase-2 scenarios for $|\eta_f|$ < 1.4. A single Gaussian is fit to the core of the mass distribution. (right) Mass resolution as a function of $|\eta_f|.$

Figure 4: Invariant mass distributions with the fit projection overlayed, corresponding to an integrated luminosity of 3000 fb⁻¹. The left plot shows the central barrel region, $|\eta_f| < 0.7$ and the right plot is for $0.7 < |\eta_f| < 1.4.$

Pile-up effects

We study the B_s^0 isolation variable with no simulated pile-up (PU) and PU-200 events per bunch crossing.

$$
I = \frac{p_T(B)}{\sum_{\text{trk}} + p_T(B)}\tag{3}
$$

Conclusions

- The inner tracker of the Phase-2 detector provides an order of 40-50% improvement on the mass resolutions which will allow precise measurements.
- The semi-leptonic background contribution into the signal regions will be reduced substantially.
- The improved separation of the B_s^0 and B^0 yields will lower the signal cross feed contamination.
- CMS will have the capability
- to measure the $B_s^0 \to \mu^+ \mu^-$ effective lifetime with an uncertainty of 0.05 ps. • to observe the $B_s^0 \to \mu^+ \mu^-$ decay with more than 5 σ .

Sensitivity of branching fraction and decay time measurements

The expected performance of the analysis is estimated with pseudo-experiments based on toy MC. The upgraded mass resolutions are used to construct the PDF models in the UML.

Figure 2: Contribution of $B^0 \to \pi^- \mu^+ \nu$ background events (with the pion misidentified as a muon) into the signal regions. The ratio of number of $B^0 \to \pi^- \mu^+ \nu$ events for Phase-2 to Run-2 is $5/19$ in the mass interval $5.2 < m < 5.3$ GeV of the B^0 signal region.

Figure 5: The binned maximum likelihood fit to the background-subtracted decay time distribution for the Phase-2 scenario. The effective lifetime from the fit is 1.61 ± 0.05 ps.

References

- [1] A. Ali. Flavour Changing Neutral Current Processes in B Decays. In *Proceedings of the Fourth KEK Topical Confernce on Flavor Physics*. Nuclear Physics B, 1997.
- [2] Muriel Pivk and Francois R. Le Diberder. SPlot: A Statistical tool to unfold data distributions. *Nucl. Instrum. Meth.*, A555:356– 369, 2005.