Winter LHCC meeting, 27 Feb 2019, CERN, Geneva (Switzerland)

Observation of the Standard Model Higgs Boson Produced in Association with a Z or W Boson, and Decaying to Bottom Quarks.

Gaël L. Perrin, on behalf of the CMS Collaboration

1400

Motivations

The Higgs boson was discovered in 2012 by the CMS and ATLAS collaborations at CERN, using the decay channels ($H \rightarrow \chi \chi$, $H \rightarrow ZZ^*$). A measurement of the Yuakawa coupling between the Higgs and the b quark is an important test of the Standard Model of particle physics (SM).

In the SM, a Higgs boson with a mass 125 GeV decays to bottom quarks with the largest BR: 58%.

Deep Neural Metworkergy of 8 TeV.

In the signal regions, the main method to discriminate signal from background events is a Deep Neutral Network (DNN), a multivariate analysis technique trained separately for each decay 1800 channel on MC using a set of discriminating variables, as the dijet mass, to separate signal from background events. A maximum likelihood fit is then applied on the DNN output to extract the

The search is performed on **Higgs decaying to two** b guarks produced with an associated vector boson (VH) decaying in three different channels:

- $Z \rightarrow II (e^+e^- \text{ or } \mu^+\mu^-)$
- Z→ vv
- $W \rightarrow Iv$ (ev or μv)

The Higgs and vector boson requires to be

boosted. This selection reduces large backgrounds from W and Z production in association with jets and top quark production, makes accessible the Z(vv)Hbb channel via large missing transfers energy and improves mass resolution of the Higgs candidates.

- The dominant backgrounds are coming from:
- production of a Z/W boson associated with jets
- production of vector boson pairs

production of top guark pair or a single top guark.

Multiclassifier

In the control regions, the discrimination between the background sources is performed by a multi-output DNN (mutliclassifier).

σ=16.5 GeV The multiclassifier is litatined on MC using the same set of discriminating variables as the signal region DNN and feturns 5 probabilities per event, one per background category. It is included in the maximum likelihood fit to constrain the normalisation uncertainties of the main

Signal and Control Regions

Signal Regions (SR): selection defined to optimise the signal purity.

Control Regions (CR): selection defined to 1000 optimise the purity of specific backgrounds, used to study the modelling of the simulation. Scale Factors (SF): correct differences in normalisation and shape between data and MC and are derived by performing a simultaneous fit on the

Mass Analysis

The mass analysis is performed as a cross-check to the DNN-based analysis. Events are separated in four categories based on a massless DNN, similar to the main analyses DNN except the variables are not correlated to the dijet mass (mjj). This avoids a sculpting of the background shapes.

The dijet mass distributions are fitted simultaneously in the four categories in the signal regions, together with the multiclassifier in the control regions.

