

Measurement of Higgs Decays to Two Tau Leptons Using the 2016 CMS Dataset

Sam Higginbotham, Presented on behalf of the CMS collaboration and HTT group, shigginb@cern.ch

A measurement of the coupling strength of the Higgs boson to a pair of tau leptons is performed using events recorded in protonproton collisions by the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to 35.9 fb^{-1} . The observed significance for the decay of the Higgs boson to tau leptons is above the discovery threshold.

• •	. -		$\mathbf{-}$	•

FINAL STATES AN

Possible $H \rightarrow \tau \tau$ final states τ denotes hadronic tau $\tau_{\rm h}$

 h^{\pm}

 h^{\pm}

1-prong

 $h \stackrel{\mp}{,} h \stackrel{\pm}{,}$

 π^{0}

3-prong

	\mathcal{UT}_{h}	$\mu(22)$	$n_{\mu}^{\mu} > 23$	$ n^{\mu} < 2.1$	$MVA \tau_h ID$
STATES AND ANALYSIS CATEGORIES	1 1L		$p_t^{\tau_h} > 30$	$ \eta^{\tau_h} < 2.3$	$I^{\mu} < 0.15$
 Possible di-tau final states, eμ, eτ_h, μτ_h, τ_hτ_h Analysis is split into categories targeted at different Higgs production scenarios 		$\mu(19) \& \tau_h(21)$	$p_t^{\mu} > 23 \\ p_t^{\tau_h} > 30$	$ \eta^{\mu} < 2.1$ $ \eta^{\tau_h} < 2.3$	$MVA \ \tau_h \ ID \\ I^\mu < 0.15$
• 0-Jet Category: Targets gluon fusion events VBF Category: Events with two jets present, high jet invariant mass, and high di-tau p_t • Boosted Category: This category catches events that do not meet the previous two		e(25)	$p_t^e > 26$ $p_t^{\tau_h} > 30$	$ \eta^{e} < 2.1$ $ \eta^{\tau_{h}} < 2.3$	
		e(12)&μ(23)	$p_t^e > 26$ $p_t^\mu > 23$	$ \eta^{e} < 2.5$ $ \eta^{\mu} < 2.4$	$I^{e} < 0.15$ $I^{\mu} < 0.2$
τ final states jets failing VBF categorization ronic tau $\tau_{\rm h}$		e(12)&μ(23)	$p_t^e > 26 \\ p_t^{\mu} > 23$	$ \eta^{e} < 2.5$ $ \eta^{\mu} < 2.4$	$I^{e} < 0.15$ $I^{\mu} < 0.2$
TAU RECONSTRCUTION		SIGNAL EXTRACTION			
• Hadron Plus Strips (HPS) algorithm is used to identify τ_h . Intermediate mesons (ρ) and γ		• 2D variables the channel a significance r CMS	inst each other ba ion then unrolled 35.9	ased on for a final fb ⁻¹ (13 TeV)	
$\underset{i \neq 1}{\overset{0.087}{\text{m}}} \text{from } \pi^0 \text{ can be} \qquad \qquad$		ents.	*****	****	

