Projections for Di-Higgs searches in 4b final state at the High Luminosity LHC

Lata Panwar (Indian Institute of Science) on behalf of the CMS Collaboration, 2019 Winter LHCC meeting, 27 Feb. 2019, CERN

HH-PRODUCTION & DECAY CHANNELS

HH-PRODUCTION & DECAY CHANNELS

Importance for SM Higgs physics
- Higgs trilinear coupling (λ_{hhh})
- Shape of Higgs-potential

BSM Non-Resonant Production
- Via contact interaction with a heavy BSM mediator
- Modify λ_{hhh} or introduce new vertices

BSM Resonant Production
- Higgs coupling with heavy resonance X
- Cross section enhancement on resonance

HH→ 4b Decay Channel
- Highest branching ratio (33%):
 - plenty of signal for study.
- With MIP timing detector (MTD):
 - Assume improvement in b-tagging performance
- Challenges:
 - Huge Multijets background contribution
 - Need proper background modelling

NON-RESONANT SEARCHES

BSM Non-Resonant Production
- Via contact interaction with a heavy BSM mediator
- Modify λ_{hhh} or introduce new vertices

BSM Resonant Production
- Higgs coupling with heavy resonance X
- Cross section enhancement on resonance

WARPED EXTRA DIMENSION BSM

Model:
- Predict spin-2 KK-Graviton particle
- Resonance may not couple to quarks and Gluons
 - VBF production might be dominant

Motivation:
- VBF channel accessible at HL-LHC
- With CMS Phase-2 analysis benefits in:
 - Boosted $H \rightarrow bb$ tagging with extended tracker coverage
 - VBF Jets identification with HGCal

Event selections:
- Higgs Jet Selection:
 - AK8 Jets with $p_T > 300$ GeV
 - $|\eta| < 3$
 - NSubtettiness < 0.6
 - Soft-Dropped Mass = [90, 140]
 - Subjet b-tagging with DeepCSV

RESULTS: M_{jj} spectrum
- Background Estimation:
 - Background reweighted with subjet b-tagging efficiency for M_{jj} distribution

RESULTS: Significance
- Calculated with 3b and 4b categories combinely.
- Possible Evidence of 3 TeV Graviton.

REFERENCES:
1. Search Sensitivity for BSM resonances in 4b final state at HL-LHC - CMS PAS FTR-18-003
2. Higgs measurements at HL-LHC - CMS PAS FTR-18-019