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I —INTRODUCTION

One parameter of the Higgs boson which we have yet to

measure is the strength at which the Higgs boson couples

to itself, 4,

Precise measurements of the Higgs self-coupling are most

easily performed using events in which two Higgs boson

are produced

The tiny cross-sections for such events mean that only

the HL-LHC and beyond will be capable of detecting a

statistically significant number of them

In this analysis we performed a projection of the

sensitivity of the HL-LHC to di-Higgs production using

decays to bbrt, a channel which offers

o0 The high branching ratio of h—bb (58.24%)

o The QCD-suppressing source of light leptons of h—1t
(BR = 6.23%)

The results of this analysis are then combined with

orthogonal analyses for other di-Higgs decay channels

I—DATA & SELECTION

|4 TeV signal and background Monte Carlo samples are
generated

o Signal production cross-section = 36.69 fb x BR, __[2]
Delphes [3] detector simulation is used to reconstruct
objects, using dedicated tagging efficiencies

O b-tagging assumes the MIP timing detector exists

O t-tagging assumes an MVA-based discriminator
Obiject selection assumes an LI trigger menu with similar
thresholds to those of Run-ll

Kinematic selection follows the Run-Il analysis [4] with
the exception that no cuts are applied to the masses of
the Higgs bosons

We select events into one of three exclusive categories
according to the 7t decay channel:

Channel # events events @ ¥ = 3000 fb!
Signal Background
urt, 100 4.3x10°
er, 70 2.9x10°
T,T, 60 1.3x10°
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lI—DNN DEVELOPMENT

e The dataset of simulated signal and background events
was divided into two equally sized subsamples

o A pair of discriminators are trained, one on each half
of the data

o A total of 52 input variables were used, split into :
m basic (27), e.g. final state 4-momenta and pTMis‘s
m high-level-reconstructed (21), e.g. Higgs 4-momenta
m high-level-global (4), e.g. s_ and jet multiplicity

e The final architecture consists of a pair of weighted

ensembles of |0 fully-connected Deep Neural Networks

(DNN), each with:

O 3 hidden layers of 100 neurons

o SELU activation functions [5]

o NADAM optimisation [6]

o Single sigmoid output - signal or background

® Models are trained via cross-validation

o An Initial pre-training is run without sample weights

o0 The main training phase with sample weights is then
performed

O The learning-rate follows a cosine cycle with warm
restarts [/]

o Data augmentation is applied to events during training
and inference, consisting of
m rotations over the azimuthal angle, ¢
m x- and y-axis reflections

e Implemented in Keras [8] with Tensorflow backend [9]
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IV—RESULTS

® The class prediction per event of the DNN ensembles is used as a summary statistic of the data

o The distributions of class prediction in each of the three channels are binned as histograms

O A shape analysis is performed using all three channels simultaneously

o0 Expected systematic uncertainties are accounted for during the fit

® For standard model coupling we expect a signal significance of 1.4 (1.6) o with(out) systematic uncertainties

® In absence of standard model non resonant production, this would correspond to 95% CL cross-section upper limits of 1.4

(1.3) times the standard model cross-section with(out) systematic uncertainties

® We then extend these results for a range of x, by reweighting the signal events to match different coupling values
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