Probing the Higgs self couplings via single-Higgs differential measurements At the HL-LHC

Jonathon Langford jonathon.langford@cern.ch

Motivation

• Higgs self couplings offer particle physics' only probe of Higgs scalar potential

Imperial College London

 $\det(\kappa_{\lambda})$

What is the HL-LHC?

- Future upgrade of the LHC machine: start data taking in 2026
- Improved magnets: drives a factor of 5 increase in instantaneous luminosity
- CMS Phase-2: major improvements across all sub-systems of the detector
- 3000 fb⁻¹ of pp-collision data @ 14 TeV, allows such Higgs precision measurements!

• But... beware of pile-up!

- Extremely small SM cross-section
- Difficult final states
- Alternative: exploit radiative corrections to single-Higgs production rates
- λ_3 dependent corrections modify external **Higgs boson kinematics**

Precision measurements of single-Higgs differential cross sections: access λ_3

Analysis Overview $ttH + tH(H \rightarrow \gamma\gamma) d\sigma/dp_T^H$

- Diphoton final state: Low bkg + good photon energy resolution
- Delphes simulation: CMS Phase-2 @ HL-LHC Assuming 3000 fb⁻¹, 14 TeV CoM energy

Theoretical framework

• Anomalous coupling parameterisation: $\kappa_\lambda = \lambda_3/\lambda_3^{
m SM}$

 $(\kappa_{\lambda}, C_1^{\imath})$

& BR BR_{SM} -• Cross section & BR scale as a function of κ_{λ}

- Different scaling factor in each bin (i) of Higgs boson observable
- C_1^i : production mode + kinematic dependence. Largest for ttH (at threshold)! enhanced κ_{λ} dependence due to heavy mass of top quark legs

 $p_{\tau}^{gen}(H)$ [GeV]

