

Search for dark matter produced in association with a Higgs boson decaying to a pair of W bosons at CMS

Nicolò Trevisani (IFCA – CSIC – UC) on behalf of the CMS collaboration

Searching for Dark Matter at LHC

- •Dark Matter particle nature is unknown and cannot be explained within Standard Model
- •At a hadron collider have to assume interaction between Standard Model and Dark

Matter candidate particles

- •Main candidate: Weakly Interacting Massive Particle
- •Final state with two Dark Matter particles and SM particle(s)
- Missing Transverse Momentum $(\mathbf{p}_{\tau}^{miss}) + \mathbf{X}$ signatures
- In this case X is a Higgs boson

Undetected

Mono-Higgs Physics Models

- •The search exploits 35.9 fb⁻¹ Data collected during 2016 by the CMS detector
- •Two benchmark models inspected following LHC DM Working Group recommendations [http://cern.ch/go/6FSK]
- Z'-2HDM: A vector boson mediator Z' decays into a Higgs boson and a pseudoscalar A
- The A then decays into two dark matter particles [arXiv:1402.7074]
- Baryonic Z': A leptophobic mediator Z' radiates a Higgs boson and decays to pair of dark matter particles [arXiv:1312.2592]

Typical Analysis Strategy

Typical strategy for mono-Higgs searches (bb, $\gamma\gamma$):

- •Tag the presence of the Higgs boson
- Through invariant mass requirements •Ask for large amount of p_T^{miss} (MET)
- Due to the presence of dark matter particles
- •Select events with large separation between the Higgs boson and the \vec{p}_T^{miss} :
- $\Delta \phi$ (h,MET) $\sim \pi$

Strategy for WW Final State

- The fully leptonic WW final state: Large branching fraction
- BR(hightarrowWW) \sim 21%
- •Selecting di-leptonic final state
- Strong background reduction
- Good control of systematic uncertainties

- •**Two neutrinos** in the final state:
- Invariant mass distribution does not peak at m_h
- Both neutrinos and dark matter particles contribute to the p_T^{miss} distribution
- Both module and direction of p_{T}^{miss} affected

Event Selection

- Baseline selections aim to define a phase space enriched in WW-like events
- •Two energetic leptons, one electron and one muon
- •Large amount of MET: **p**_T^{miss} > **20 GeV**
- •Large transverse momentum of the di-lepton system: $p_T^{\ell\ell} > 30$ GeV
- •No b-tagged jets in the event
- **Specific** selections for **mono-Higgs topology**
- •Higgs invariant mass spoiled by the presence of neutrinos: $m_{\ell\ell}$ < 76 GeV
- •Higgs boosted by the recoil against dark matter: $\Delta R(\ell, \ell) < 2.5$
- **Sensitivity enhanced by using** multivariate analysis techniques
- •Boosted Decistion Trees (BDTs)
- •One set of BDTs for each of the two models
- •Trained with several significant variables

Results

No significant discrepancies between data and the Standard Model have been found •Limits have been set on the dark matter production cross section

Signal Extraction

- Signal and background yields extracted through a maximum likelihood fit
- •Using the **shape of the BDTs**
- •Fitting simultaneously signal region and control regions
- Control regions: WW, Top, and Z + jets
- Nonprompt leptons contamination estimated with fake rate method

Combination

Results of the WW channel have been **combined with other final states**

•bb, $\gamma\gamma$, $\tau\tau$, and ZZ [CMS-EXO-18-011]

•Results dominated by statistical uncertainty

- Z'-2HDM model: 740 GeV < $m_{Z'}$ < 800 GeV and 300 GeV < m_A < 320 GeV excluded
- **Baryonic Z'** model: no sensitivity reached

[GeV]

420

400

380

360

340

320

•Sensitivity driven by bb channel due to much larger branching fraction

•Z'-2HDM model: 500 GeV < $m_{Z'}$ < 3200 GeV and 300 GeV < m_A < 800 GeV excluded

•Baryonic Z' model: 100 GeV < $m_{Z'}$ < 1500 GeV and 1 GeV < m_{χ} < 420 GeV excluded

Posters@LHCC: Students' Poster Session at the 2019 Winter LHCC meeting, 27 Feb 2019, CERN, Geneva (Switzerland)