

Search for Heavy Majorana Neutrinos in Events with Same-Sign Leptons and Jets at $\sqrt{s} = 13$ **TeV with the**

CMS Detector

Jae Sung Kim (Seoul National University) on behalf of CMS Collaboration

The Mass of Neutrino (v)

- In the Standard Model (SM), neutrinos are massless
- HOWEVER, neutrinos oscillate! Phys. Rev. Lett. 81 1562 : \rightarrow Neutrinos have mass! (BUT, $\Sigma m_v < 0.2 \text{ eV}$.. WHY SO SMALL?)
- Clear evidence of physics beyond the SM (BSM)

Seesaw Mechanism Phys. Rev. Lett. 44 912

- Introduce a right-handed neutrino (N) which mixes with SM v's
- Neutrino mass term :

3. Backgrounds

Prompt Same-sign Lepton Backgrounds

- Multiboson, tt+boson, W[±]W[±], double-parton scattering
- Systematics on the cross sections and detector effects ~ 13-45%
- Use Monte-Carlo simulation (WZ, ZZ and Zy are normalized in data)

Misidentified-lepton Backgrounds

- Fake electron : $\pi 0 \rightarrow \gamma \gamma$ + nearby track, photon conversion
- Fake muon : π/K decay into muons, punch through to muon system Measure T/L, where T is lepton passing tight selection, and L is lepton passing loose selection - Apply T/L weights to data, which has "loose but NOT tight" leptons → Data-driven estimation - Systematic ~ 30% from simulation closure test

Search for Majorana Neutrinos at the LHC

- $m_v \sim 0.1 \text{ eV}$ predicts $m_N 100-1000 \text{ GeV}$
- Two main production mechanisms are s- and t-channel :

Event Selections

Mismeasured-sign Backgrounds

- Opposite-sign (OS) backgrounds mismeasured as SS events
- Negligibly small probability for muon
- Electron chargeflip (CF) rate measured from simulation
- Obtained scale factor in $Z \rightarrow ee$ data events
- Multiplied to OS data events → **Data-driven estimation**
- Systematic ~ 29-88%
 - Yield of this background is small compared to others

4. Search Results

High-Level Trigger

- Unprescaled dilepton (e or μ) triggers

Offline Selection

- Preselection

- Two same-sign (SS) leptons (l)
- At least one jet (j, AK4) or wide jet (J, AK8)
- Two mass categories with two signal regions
 - Low-mass $(m_N < m_W)$
 - No b-tagged jet, $m(lW_{jet}) < 300 \text{ GeV}, p_T^{miss} < 80 \text{ GeV}$
 - SR1 : $N(j) \ge 2$; $W_{jet} = dijet$ with m(lljj) closest to m_W
 - SR2 : **N(j)** = **1**; W_{iet} is the jet
 - High-mass $(m_N > m_W)$
 - No b-tagged jet, $m(W_{jet}) < 150 \text{ GeV}$, $(p_T^{miss})^2/S_T < 15 \text{ GeV}$, where S_T is scalar p_T sum of lepton, jet and p_T^{miss}
 - SR1 : N(J) = 0 and N(j) \geq 2; W_{jet} = dijet with m(jj) closest to m_W
 - SR2 : $N(J) \ge 1$; W_{jet} is the wide jet with m(J) closest to m_W
- Additional optimized selections for each m_N hypothesis

No significant deviation from the SM

5. Result Interpretations

<u>95% CL Upper Limits on the mixing matrix element, $|V_{\ell N}|^2$ </u>

b. Conclusion

- Heavy Majorana neutrino search in SS dilepton final states at 13 TeV has been performed
- m_N between 20 and 1600 GeV was searched, but no significant deviation from SM prediction observed
- Upper limits of the mixing matrix elements are set for electron, muon, and electronmuon.
- Most stringent direct limits for N masses above 430 GeV
- Publication : 10.1007/**JHEP**01(2019)122

Posters@LHCC: Students' Poster Session at the 2019 Winter LHCC meeting, 27 Feb 2019, CERN, Geneva (Switzerland)