

The CMS ECAL Upgrade for Precision Crystal Calorimetry and Timing at the HL-LHC

Abraham Tishelman-Charny¹

on behalf of the CMS Collaboration

¹Northeastern University

Students' Poster Session at the 2019 Winter LHCC meeting, 27 Feb 2019, CERN, Geneva (Switzerland)

Abstract

The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid Experiment (CMS) has been operating at the Large Hadron Collider (LHC) with proton-proton collisions at 13 TeV center-of-mass energy and a bunch spacing of 25 ns since 2015. Challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC). We will present the design and R&D studies for the CMS ECAL barrel crystal calorimeter upgrade. Particular challenges at the HL-LHC are the harsh radiation environment, the increasing data rates, and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. We will present test beam studies of the new readout and trigger electronics, which must be upgraded due to the increased trigger and latency requirements at the HL-LHC. In addition, the CMS ECAL barrel upgrade will achieve a timing resolution of around 30 ps for high energy photons and electrons. The benefits of precision timing for the ECAL event reconstruction at HL-LHC will be presented. Simulation and test beam studies carried out for the timing upgrade of the CMS ECAL barrel will be shown, and the prospects for a full implementation of this option will be described.

CMS ECAL

- Precisely measures the energies of photons and electrons • Composed of 75,848 PbWO₄ (Lead
- Tungstate) crystals. Barrel (EB): 61,200. Endcaps (EE): 14648
- Essential for $H \rightarrow \gamma \gamma$ and many other physics studies
- For upgrade:
 - Replace EE, upgrade EB on and off-detector electronics

Preamp ADC no LUT :12 bits + 1 bit 12 bits + 1 bit 111T · 10 hits + 1 h Single to 2.56 Gb/s 100 nF Digital Data Gain rasnmiss To OD LUT 10.24 Gb/s Single to Unit Diff. SerDes Electronics PLL eClock 12C 12C DACs I2C 40 MHz Test refClk Injection

Barrel Upgrade

VFE and FE Electronics

- Three main on-detector electronics components:
- Pre-Amplifier
- Analog to Digital Converter (ADC) • Front End (FE)
- They will be upgraded to:
 - Decrease shaping time
 - Increase sampling rate from $40 \text{ MHz} \rightarrow 160$
- Improve:
 - Timing resolution
 - Electronics noise reduction
 - Spike (fake signal) suppression
- Operating temperature: $\circ 18^{\circ}C \rightarrow 9^{\circ}C$

CMS ECAL Schematic

- MHz
- Stream increased rate of information off-detector at 40 MHz
- Off-Detector will implement trigger logic with single crystal information

2018 Test Beam

- June and October 2018: Test Beam for pre-amplifier prototype (CATIA V0)
- Used electron beams at 25, 50, 100, 150, 200, and 250 GeV
- Desired timing resolution: 30 ps
- Measured timing resolution: ~20 ps. Measured energy resolution: < 1%

HL-LHC

- When 2026 arrives:
- $LHC \rightarrow HL-LHC$
- L1 Trigger latency: 3.8 μ s \rightarrow 12.5 μ s
- L1 Trigger rate: $100 \text{ kHz} \rightarrow 750$

