

upgrade requires mass production of GEM foils.

Double-mask

advantages of more simple and faster production process.

1. Introduction

Performance of the GEM detector based on Korean foils for the CMS Muon Upgrade

Junho Choi (Seoul National University) On behalf of the CMS muon group

- Test the uniformity of the gas gain in all (in, io) regions of a GE1/1 chamber
- (96 slices in ϕ direction) * (8 regions in η direction)
- = 768 clusters
- Measured uniformity = $10.2 \sim 16.2 \%$

96 slices

to be installed in the endcap stations of the CMS muon system. This upgrade will improve

the muon trigger and tracking performance in the high-eta region for the HL-LHC project.

Not only CERN but also several suppliers participate in the production because the

on the top and bottom surface is challenging for a large size foil, this technique has

Chambers assembled with Korean foils are produced using double-mask technique

while CERN foils using single-mask technique. Even though alignment of the two masks

← Raw material → Vacuum deposited copper

We present the results of several quality control tests on the Korean GEM chambers.

- Consistent with the result of CERN foils [1]
- 3. Gain Uniformity Triple GEM detectors for the CMS Phase-II upgrade have been developed and planned

Single-mask

Fig.1 : Overview of the double-mask(L) and the single-mask(R) production processes [2]

2. Effective Gas Gain

- Definition of the effective gas gain

R : Interation rate

I_a: Readout current

 n_T : # of primary electrons per incoming particle

Fig.3 : Schematic view of triple GEM detector[2]

- Rapid electric current between top and bottom surfaces of a GEM foil
- Damage on GEM detector
- Discharge induces the current change.

- A loop antenna is wound around a voltage divider wire to capture the induced signal from the current change in the HV circuit.

Fig.8 : Gain uniformity result of the 4 korea chambers

4. Aging Test

Gas Mixture: Ar/CO2 (70/30) - 5 L/hr ⁽¹⁾ 1.8 Irradiation at GIF++ - Validate radiation hardness under HL-LHC ¹³⁷Cs (14.1 TBq in 2015) 662 keV γ (10 - 30 kHz/cm²) - Avalanche plasma Initial gas gain = 2×10^4 \rightarrow monomers from quenching molecules \rightarrow polymers from the monomers \rightarrow sticks to the conducting surface \rightarrow Degradation on conductivity 0.6 - X-axis : Accumulated charge corresponds to the working time of the detector 0.4 GE1/1-X-S-KOREA-0001 Detecto - 66mC/cm² of accumulated charge 0.2 ~ 217 years of GE2/1 40 50 ~ 2.3 years of ME0 operation @HL-LHC Accumulated Charge (mC/cm²) - No significant gain drop is observed Fig.9 : Aging test result of GE1/1-X-S-KOREA-0001 \rightarrow Validated in GE2/1 project (9mC/cm²) \rightarrow ME0 project is on going (283mC/cm²) GE1/1-X-S-KOREA-0003 **5.** Flux Capability

Protection resistance = 10 MG

Gas mixture = Ar/CO₂ (70/30)

- High particle flux

- \rightarrow Space charge \uparrow
- \rightarrow decrease the electric field

- 1st discharge probability measurement with GE1/1 - Low probability ~ 10^{-9} @ gain of 10^{4}
- Effective gas gain before/after 229 discharges \rightarrow No significant difference
- ADC spectra before/after 229 discharges \rightarrow No significant difference on detector resolution - Small difference on the gas gains and peak positions can be understood as effect of enviromental parameter - Temperature & Pressure.

Fig.6 : Discharge probability(L), Effective gain(M) and ADC spectra(*R*) before/after 229 discharges

2019 Winter LHCC meeting

Fig.4 : Schematic figure of discharge on GEM

foil

 \rightarrow degradation on the gas gain

- No gain drop to flux ~10⁵ Hz/mm²

Gain drop from 10⁵ Hz/mm²

- Fig.10 : Flux Capability result of GE1/1-X-S-KOREA-0003
- : Current between top and bottom surface of the foil
- \rightarrow voltage drop by high protection resistence(10 M Ω) on the GEM foil.

Z

 \rightarrow Weaken the electric field

7. Summary

- Test Korean chambers in the aspect of effective gain, gain uniformity, aging, flux capability, and discharge
- Performance
- Comparable to CERN foils
- Satisfy the durability requirement @ HL-LHC
- Excellent prospect on Korean GEM foil production

Reference

1] F. Fallavollita, Triple-Gas Electron Multiplier technology for future upgrades of the CMS experiment: construction and certification of the CMS GE1/1 detector and longevity studies, PhD Thesis, CERN-THESIS-2018-349

[2] J. A. Merlin, Study of long-term sustained operation of gaseous detectors for the high rate rnvironment in CMS, PhD Thesis, CERN-THESIS-2016-041. 3] CMS Collaboration, Production and quality control of the new chambers with GEM technology in the CMS Muon System, NIM A, 035 (2018)