

The ALICE Muon Forward Tracker commisionning: first beam tests

Manuel GUITTIERE, ALICE Collaboration

SUBATECH, CNRS/IN2P3, Université de Nantes, IMT Atlantique, Nantes, France, (Manuel.Guittiere@subatech.in2p3.fr)

MFT upgrade overview

Beam test setup (June 2018 at CERN PS)

- 5 disks equipped on both sides with silicon pixel sensors (920 ALPIDE sensors). Ladder structure: FPC + sensors.
- ALPIDE technology: Monolithic Active Pixel

Ladders on disk

Ζ

- ALPIDE Telescope: 3 chips (at 220, 160 and 140 mm from disk front plane).
- Trigger signal: plastic scintilliators upstream.

Physics motivations

Main ALICE improvements with MFT

- Extend the open heavy flavour Physics program at large pseudo-rapidity, measurements down to low p_T .
- Increase S/N ratio matching tracks with MUON Spectrometer.
- Add high-precision vertexing capabilities to the MUON spectrometer (Currently limited by the front absorber).
 e.g. prompt/non-prompt charmonium discrimation.

New high-precision measurements accessible thanks to MFT upgrade are summarised in the Table 1.1.

Schematic view of B decay J/ψ identification

Table 1.1: New physics measurements made possible by the MFT addition.

Observable	$p_{\mathrm{T}} ext{-}\mathrm{coverage}~(\mathrm{GeV}/c)$
Charm	
Prompt $J/\psi - R_{AA} \& v_2$ $\psi(2S) - R_{AA}$	$p_{\mathrm{T}}(J/\psi) > 0$ $p_{\mathrm{T}}(\psi') > 0$
μ from <i>c</i> -hadron decays – R_{AA} & v_2	$p_{ m T}(\psi) > 0$ $p_{ m T}(\mu) > 1$
Beauty	
Non-prompt $J/\psi~-R_{ m AA}$ & v_2	$p_{\mathrm{T}}(J/\psi) > 0$
μ from $b\text{-hadron}$ decays – $R_{\rm AA}$ & v_2	$p_{ m T}(\mu)>3$

Chiral symmetry and QGP temperature

o V

Light vector mesons spectral functions $p_{\rm T}(\mu\mu) > 1$ and QGP thermal radiation

Main beam test motivations

- Test readout and tracking capabilities from a half disk prototype using MOSAIC readout boards (1 board/ladder).
- Estimate resolution on track reconstruction (Expected sensor intrinsic spatial resolution: $\sim 5\mu m$).
- Estimate detection efficiency (Expected detection efficiency > 99.5%).

Beam test data and methods

Results of beam test data analysis

Collected data specifications

- Total Number of reconstructed tracks: $\sim 3.10^7$.
- 2 acquisition configurations: 1 front ladder + 1 back ladder (17 runs) and 1 front + 2 back (38 runs).
- 2 back-bias voltage configurations: 0V and -3V.

Ladder 3025, Chip 8, 711501.0 entries

Resolution and efficiency calculations

ladder (e.g back = ref to estimate front eff).

• Alignment performed using Millepede with x, y, z

Run 180705_040043

 σ = 26.733 ± 0.124 μ m

mean = 0.038 ± 0.108 μm

9000

- Estimated Resolution for beam test data ~ $7\mu m$ for y direction (~ $7.5\mu m$ for x direction).
- Consistent with expected resolution $\sim 5\mu m$ considering multiple-scattering effects.

Efficiency

Resolution

• Estimated detection efficiency consistent with expected efficiency (> 99.5%).

