

ITk Detector Overview

Arturo Rodriguez Rodriguez on behalf of the ATLAS ITk Collaboration

ATLAS Inner Tracker for HL-LHC (ITk)

ITk Strip Detector

At the **HL-LHC** the **ITk** detector will face:

- **Radiation Damage**
 - HL-LHC should deliver ~ 4000 fb^{-1} (current inner detector for IBL ~ 850 fb^{-1})
 - New sensor design requires increased radiation hardness

ITk Strip Module:

- One sensor \bullet
- Planar Si n-in-p
- Low mass PCBs (hybrids)
- Power board with DC-DC
- ASICs ABC 130 nm CMOS

Barrel Module:

- Rectangular geometry
- Strip length 2.4 4.8 cm
- Pitch 75.5 μm
- Stereo angle 52 mrad
- 2 different modules

Endcap Module:

- Radial geometry
 - Strip length 1.9 6 cm
 - Pitch 69.9 80.7 μm
 - Stereo angle 40 mrad
- 6 different modules

- **Pileup** ~ 200
 - Keep current inner detector occupancy granularity increased by ~10x

ITk Pixel Detector:

- 5 barrel layers: short barrel + inclined modules ($|\eta| < 1.4$) + endcap rings ($|\eta| < 4$) **ITk Strip Detector:**
- 4 barrel layers + 2x6 endcap wheels $(|\eta| < 2.7)$

- Higher granularity
- Minimum material
- η coverage increased to 4 (currently ~ 2.5)
- CO₂ cooling

ITk Pixel Detector

Local Support:

- Mechanical stability requirement: endcap z, R ($20 \mu m$), Barrel and φ (2µm)
- Titanium cooling pipes
- Electrical services

Basic building units

R3

R2

R1

R0

- Pixel Module development:
 - Si n-in-p technology, small pixel size
 - FE chip: Gbps readout capability
 - Flip-chip using bump bonding

track

←O

←O

←

←O

Serial powering scheme

←0

 $25 \times 100 \ \mu m^2$

• 3D sensor innermost layer

outermost layer

- Sequence development on going:
 - Attachment, wire bonding, encapsulation

- Planar n-in-p type other layers
- Thinned to $\sim 150 \mu m$

ASIC rad hard 65nm CMOS: Joint ATLAS & CMS project within RD53 collaboration

Single analog square pixel Front End on sensor above Digital "sea" Bump bond location Analog "island

- Data rate ~1.28 Gbps ullet
- Noise rate ($<10^{-6}$, 600 e^{-1}) \bullet
- RD53A first prototype of the final readout ASIC

http://rd53.web.cern.ch/rd53/

Barrel staves

Double-Sided R0 strip module

- Single-sided modules on both sides of a core
- Unirradiated sensors
- Petalet core including coolant tubes
- Readout independently from both sides, using a Nexys board
- Successfully tested in:
 - Freiburg clean room
 - Beam Test at DESY

Endcap petals

Quad module for outer endcaps

Loading tests with modules on Endcap ring local support 7 loaded FE-I4 quad modules on outer barrel stave prototype

Quad barrel module

Residual distributions of hits with respect to tracks for either side of the double-side with blue box indicating strip pitch (left). Noise occupancy and efficiency as a function of applied threshold in fC (right). Defining operation requirements as efficiency > 99% and noise occupancy < 10^{-3} . The module can be operated using a threshold between 0.8 - 2.1 fC

Technical Design Report for the ATLAS Inner Tracker Strip Detector (CERN-LHCC-2017-005) References: Technical Design Report for the ATLAS Inner Tracker Pixel Detector (CERN-LHCC-2017-021)

*A double-sided, shield-less stave prototype for the ATLAS Upgrade strip tracker for the High Luminosity LHC (https://cds.cern.ch/record/2003050)