Performance of the ATLAS RPC detector and trigger at 13 TeV

Introduction

The ATLAS experiment utilizes the Resistive Plate Chambers detector (RPC) for the first-level muon trigger system in the barrel region of the detector. This poster presents measurements of RPC detector and trigger performance using proton-proton collisions at a centre-of-mass energy of 13 TeV collected in 2018, showing results in terms of the detector and trigger timing and efficiency.

The ATLAS RPC Detector and Trigger System

The present ATLAS muon trigger in the barrel region is based on:

- 3 concentric RPC layers
- 16 physical sectors, ~3700 gas volumes
- Each physical sector is segmented in 4 trigger sectors
- 64 trigger sectors in side A and side C
- Each trigger sector is segmented along η in towers [1] [3]

The Level-1 (L1) trigger algorithm is based on hit coincidence of 3 concentric RPC stations [3]:

- low p_T trigger: coincidence between the innermost two RPC stations
- high p_T trigger: additional confirmation on the third external station

Performance in one detector gas gap

- All muon tracks are extrapolated to the RPC surface from MDT detector
- Only muons with tracks extrapolated inside the boundary are used for the study of this gas gap

Trigger efficiency vs. offline muon p_T

- L1 muon barrel trigger efficiency for offline muons as a function of their transverse momentum [4].
- Efficiencies are measured using a tag-and-probe method with Z → µµ candidates
- Efficiency for the low p_T trigger thresholds (MU4, MU6, MU10) reaches a plateau of about 78% for high p_T trigger thresholds (MU11, MU20, MU21) is around 68% [1]
- Efficiencies for all thresholds are very close to the geometrical acceptance values, confirming the good detector performance

Plateau value of the L1 muon barrel trigger efficiency for offline muons as a function of time [4]

- Each point corresponds to a different ATLAS run recorded in 2018
- Only runs with integrated luminosity greater than 50 pb^{-1} are used

Trigger timing performance

- Fraction of RPC high-pT trigger hits associated correctly to the collision Bunch Crossing (BC) for the whole RPC trigger system as a function of time [4].
- Each point corresponds to a different ATLAS run recorded in 2018
- Only runs with integrated luminosity greater than 50 pb^{-1} are used
- The fraction of high p_T muons associated to the correct BC is 99.6% [1]
