ATLAS Level-1 Topological Processor Performance during Run-2

Carlos Moreno-Martínez

from Institut de Física d'Altes Energies (IFAE) on behalf of the ATLAS Collaboration

ATLAS Trigger System

Out of the 40 MHz rate of proton-

Run-2 L1Topo Hardware

- During Run-2, two identical boards were commissioned and used. In each board:
- 2 Virtex 7 FPGAs to process algorithms
- 1 Virtex 7 FPGA for communication and readout
- ~ 1Tb/s input bandwidth per board
- 128 trigger decision bits available
- 113 were used in 2018

The Level-1 Topological Trigger receives information from both Level-1 Calorimeter and Level-1 Muon Trigger systems and provides decisions based on topological algorithms. A bitwise simulation of these algorithms runs within the High-Level Trigger for each Level-1 accepted event.

Functionalities

• Angular selections:

- $\Delta \phi$, ΔR , $\Delta \eta$, angular window, objects disambiguation
- Mass selections:
- Invariant and transverse mass
- Flexibility of using central and/or forward jets
- Combination of calorimeter and muon detectors information
- Access to trigger objects from different bunch crossings

Simulation Validation Plots

	ATLAS Pre Data 2018,	liminary √s=13 TeV	L1Topo Operation Run taken on Sep 24th, 2018						
<u>sim not hdw</u> sim	<1e-07	<1e-07	<1e-07	<1e-07	<1e-07	<1e-07		 ^{10⁻²} • The simulation running in the HLT allows to validate the hardware decisions • Rates of decision mismatches • between bardware and simulation 	Dı Le
								 are displayed online for each algorithm and stored 10⁻⁴ The plot shows the rate of hardware 	

false negatives (first row) and hardware false positives (second row) for different topological algorithms

All the algorithms used in physics analyses show a hardware to simulation decisions agreement better than 99%

Performance

The event rate reduction achieved by the Level-1 Topological Trigger has been essential for many physics analyses. It has also been used for commissioning systems to be used in Run-3, as part of the Fast Tracker (FTK) system.

- Luminosity block [~60s]
- This plot shows the trigger rate versus time when the L1Muon (red) or the L1Topo trigger including invariant mass and di-muon distance requirements (blue) are used. A rate reduction of up to a factor of 4 is achieved with L1Topo
- L1Topo proved very useful for B-physics analyses targeting final states with very low transverse momentum (p_T) leptons
- **Run-3 L1Topo prototype**

- The L1Muon system will undergo a number of changes:
- The L1Calo system will be replaced by three new types of Feature Extractor **boards (FEX)** providing higher granularity trigger towers

Specific changes to L1Topo

- The Run-2 Topological Trigger System will be replaced by a new system consisting of three boards, each containing:
 - 2 Xilinx UltraScale+ FPGAs for algorithm computation with enhanced processing power
 - 118 input fibers per FPGA
 - 24 output fibers per FPGA
- In contrast to Run-2, the new L1Topo system will run topological and some non-topological algorithms
- The commissioning plan foresees using the Run-2

L1Topo played also an important role for VBF analyses

- The possibility of placing a cut in the invariant mass of jets reduces the multi-jet trigger rate while enhancing the signal over background
- This plot shows the efficiency of the di-jet HLT trigger seeded by the L1Topo invariant mass trigger versus the offline di-jet invariant mass
- The invariant mass L1Topo trigger is used in analyses such as Higgs to di- τ or VBF Higgsino production

Legacy system while commissioning the Run-3 system.

Summary

- The Level-1 Topological Trigger has been successfully commissioned and used during Run-2
- It added new features to the Level-1 Trigger, such as the possibility of combining information from both the Calorimeter and the Muon detectors
- It has been crucial for many analyses targeting high rate low p_T trigger signatures
- A bitwise simulation of the algorithms helped in the validation process, and in 2018 all the triggers used for physics showed a hardware-to-simulation agreement better than 99%
- For Run-3, three new L1Topo hardware boards including higher processing power FPGAs will be built and will replace the Run-2 system

LHCC Poster Session - CERN, 27 February 2019

For more information: [1] ATLAS Collaboration, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerOperationPublicResults [2] R. Simoniello, The ATLAS Level-1 Topological Processor: from design to routine usage in Run-2, ATL-DAQ-PROC-2018-044 (2018)

