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beyond SM

Why b-Tagging?

• Several interesting physics processes have b-
quarks in their final state

• Or a veto on b-quarks can suppress the 
background
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• Heavy-flavour tagging important tool for physics analyses
• Precision measurements
• Search for new physics

High-level Taggers
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b-Tagging Structure in ATLAS

• Baseline taggers deploy specific heavy flavour jet properties
• Long lifetime (∼1.5 ps ➔ ∼3mm track in detector)
• High mass (∼5 GeV)
• High decay product multiplicity
• b-hadron decays to a c-hadron (|Vcb|>>|Vub|) 

• High-level taggers (MV2 & DL1 [1]) combine these information (40-50 
variables)
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DL1score = ln
pb

fc ⋅ pc + (1 − fc) ⋅ plight-flavour

• Deep neural network requires also
• Preprocessing, feature selection 

etc.
• Network with fully connected layers
• Multi-class output ➔ allows also c-

tagging

• Using Keras (2.2.4) framework with 
tensorflow backend

• Full training procedure relies on HDF5
• Application can be run in ATLAS 

reconstruction software, relying on the 
LWTNN C++ interface [2]

Training Samples
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Figure 14: Distribution of the jet transverse momentum of the Z
0 sample compared to that of tt̄ events for light-flavour

(a) and b-jets (b).

The relation between the pT and energy of the jet to those of the original b-quark and hadron is key for
understanding the flavour tagging response as a function of the jet pT. Two di�erent regimes can arise, as
shown in Figure 15. In tt̄ events the b-jets originate from a relatively low-mass (mt ) state. This results in
small pT transferred to the heavy b-hadron. This leads to a correlation between jet pT and heavy hadron
pT for pT . mt . For jet pT & mt , the jet transverse momentum is determined by nearby hadronic activity
unrelated to the heavy hadron and the correlation is therefore reduced. Instead, b-hadrons produced in the
broad Z

0 decays with large pT yield a high degree of correlation with the jet pT. It is important to ensure
that the training of the flavour taggers covers both of these regimes.
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Figure 15: Two-dimensional correlations between the b-hadron and the b-jet transverse momenta for tt̄ (a) and Z
0

(b) events. The continuous line represents the most probable value of the b quark fragmentation function used in
the simulation that controls the relation between the b quark and the b hadron energy.

A new training strategy has been employed using a sample made both of tt̄ events, to characterise the
low pT region, and broad Z

0 events, to probe the high pT regime. This new sample, referred to as the

22
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Figure 14: Distribution of the jet transverse momentum of the Z
0 sample compared to that of tt̄ events for light-flavour

(a) and b-jets (b).

The relation between the pT and energy of the jet to those of the original b-quark and hadron is key for
understanding the flavour tagging response as a function of the jet pT. Two di�erent regimes can arise, as
shown in Figure 15. In tt̄ events the b-jets originate from a relatively low-mass (mt ) state. This results in
small pT transferred to the heavy b-hadron. This leads to a correlation between jet pT and heavy hadron
pT for pT . mt . For jet pT & mt , the jet transverse momentum is determined by nearby hadronic activity
unrelated to the heavy hadron and the correlation is therefore reduced. Instead, b-hadrons produced in the
broad Z

0 decays with large pT yield a high degree of correlation with the jet pT. It is important to ensure
that the training of the flavour taggers covers both of these regimes.
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Figure 15: Two-dimensional correlations between the b-hadron and the b-jet transverse momenta for tt̄ (a) and Z
0

(b) events. The continuous line represents the most probable value of the b quark fragmentation function used in
the simulation that controls the relation between the b quark and the b hadron energy.

A new training strategy has been employed using a sample made both of tt̄ events, to characterise the
low pT region, and broad Z

0 events, to probe the high pT regime. This new sample, referred to as the
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t t̄• Using hybrid sample composed of    and Z’ 
events

➔More statistics in higher pT region
• Downsampling approach applied to match pT 

and |η| distributions for all 3 categories 
• Ensure independence of tagging from 

kinematics
• Different hybrid compositions tested

ATL-PHYS-PUB-2017-013

hybrid sample in the following, is obtained by including b-jets from tt̄ if the corresponding b-hadron
pT <250 GeV and from the Z

0 sample if the b-hadron pT >250 GeV. For c- and light-flavour jets, the same
mixing strategy is applied, moving from tt̄ events to Z

0 events for values of the jet pT above 250 GeV.
The full statistics of the tt̄ (5M events) and the Z

0 (3M events) samples is used for the training of the
multivariate algorithms. Figure 16 shows the resulting pT distribution of b-jets in this training sample.
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Figure 16: b-jet pT distribution of the hybrid sample used for the training of the multivariate-based taggers.

4.2 MV2 tagger

The first high-level tagger is a BDT discriminant that combines the output of the low-level taggers
described in Section 3. The BDT algorithm is trained using the ROOT Toolkit for Multivariate Data
Analysis (TMVA) [31] on the hybrid sample. b-jets are considered as signal, c- and light-flavour jets as
background. The performance is evaluated separately on the tt̄ and Z

0 samples. The list of input variables
also includes the pT and ⌘ of the jets, as they give useful information in interpreting the separation power
of the variables from the low-level taggers.

The b- and c-jets are reweighted in pT and ⌘ to match the spectrum of the light-flavour jets. This procedure
avoids di�erences in the kinematic distributions of signal and background that can be interpreted as dis-
criminating by the training. The complete list of variables used for the training, as well as the features of
the algorithm and the optimization of the training parameters are discussed in Ref. [5]. The c-jet fraction
in the training is set to 7% and that of light-flavoured jets to 93%. These values achieve a suitable balance
between light-flavour and c-jet rejection.

Given the availability of new low-level taggers, several variants of the MV2 taggers have been developed:

• a reference option, based on the standard impact parameter (IP2D and IP3D) and secondary vertex-
based (SV1 and JetFitter) input variables is adopted for the 2016 data-analysis in Ref. [5] (MV2);

• a new option, including in addition the SMT (MV2Mu);

• a full option with the SMT and the RNNIP inputs in addition to the standard variables (MV2MuRnn).

The use of the full set of input variables from the SMT algorithm and the output of the SMT multivariate
BDT discriminant have both been tested in the MV2 training. The MV2 BDT configuration is significantly
simplified by using a single output variable from SMT instead of six inputs. Furthermore, it is found that
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Hyper Parameter (HP) Optimisation with GRID GPUs
• Using docker image (built by Gitlab CI) 

for jobs
• Configurable amount of HP 

combinations (configs)
• Using panda job splitting to distribute 

HP configurations over sites / jobs
• Interactive development on JupyterHub 

deployed with Kubernetes

training & validation
dataset (hdf5)

panda (prun)

training script
(python)

provides Docker 
image

GRID
GPUs rucio

CONTAINER with
config files (json)

containing HP 
information

training results
(json)

Workflow
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MV2c10rnn performance
HP optimisation, best result
HP optimisation, medium result
HP optimisation, worst result

77% b-tagging efficiency

Optimisation Results
• 800 combinations over 5 HP dimensions tested
• Optimisation provides promising results
• Confirms relation between ROC curve and validation loss

units in 3rd layer

256

512

units in 4th layer

42

48

units in 5th layer

36

42

activation function

tanh

relu

batch size

1000

1800

2600

3400

4200

5000

learning rate validation loss

0.0001

0.0021

0.0041

0.006

0.008

0.01

0.66

0.68

0.69

0.7

0.72

0.73ATLAS Simulation Preliminary DL1 Hyper parameter optimisation

• Each jet gets probability for being a b-, c- or 
light flavour jet
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