LHCC Poster Session – CERN, 27 February 2019 **Observation of electroweak W[±]Zjj production** at $\sqrt{s} = 13$ TeV with the ATLAS detector

Paper content

• Study of the WZjj-EW production in the **fully-leptonic** (e,µ) boson decay channels using 36.1 fb⁻¹ of data recorded in 2015-2016 with the ATLAS detector • Cross-sections are measured in a signal-rich phase-space for WZjj-EW and WZjj • Unfolded differential cross-section are also derived for WZjj

• Leptons (exactly 3): • $|\eta| < 2.5$

Multivariate approach

• A **BDT** is trained in the signal region

• It uses 15 variables selected for their discrimination potential, mostly between the main background (WZjj-QCD) and the WZjj-EW signal.

• It is trained on Monte Carlo to separate WZjj-EW signal from all backgrounds

- The input variables Data/MC agreement has been extensively checked throughout the analysis
- The trained BDT allows an excellent signal purity in the high BDT score region

WZjj cross-section

 The WZjj (EW + QCD) fiducial cross-section is computed, for each decay channels, as:

$$\sigma_{WZjj}^{fid} = rac{N_{data} - N_{bkg}}{\mathcal{L}.C_{WZjj}} imes ig(1 - rac{N_{ au}}{N_{all}}ig)$$

• The total fiducial WZjj cross-section in the VBS fiducial phase-space is:

 $\left| \sigma^{fid.}_{WZjj} = 1.68 \pm 0.16 (ext{stat.}\,) \pm 0.18 (ext{syst.}\,) ext{ fb} = 1.68 \pm 0.25 ext{ fb}
ight|$

Differential cross-sections

- Unfolded differential cross-sections are computed for WZjj (EW+QCD)
- Data in the SR are unfolded through an iterative Bayesian unfolding method, in order to remove detector effects
- Unfolded distribution were selected for being useful for future aQGC studies,

η_W **BDT Score** m_T^{WZ}

WZjj-EW cross-section

- A combined likelihood fit is performed in the SR and the 3 CRs simultaneously.
- Systematic uncertainties on the objects reconstruction and on the signal and backgrounds **modeling** are taken into account, and correlated between the 4 regions used in the fit.
- Interference between WZjj-EW and WZjj-QCD are taken into account as part of the signal.
- Its impact on the signal shape is evaluated in simulation and used as a systematic uncertainty.

Source	Uncertainty [%]	
WZjj-EW theory modelling	4.8	
WZjj-QCD theory modelling	5.2	
WZjj-EW and $WZjj$ -QCD interference	1.9	
Jets	6.6	
Pile-up	2.2	
Electrons	1.4	
Muons	0.4	
b-tagging	0.1	
MC statistics	1.9	
Misid. lepton background	0.9	
Other backgrounds	0.8	
Luminosity	2.1	
Total Systematics	10.7	

and/or for future Monte Carlo modeling studies

The signal strength ($\mu_{WZjj-EW}$) is measured in the SR only:	Т
	V

$\mu_{WZii-EW} = 1.77^{+0.44}_{-0.40}(\text{stat.})^{+0.22}_{-0.17}(\text{syst.}) = 1.77^{+0.49}_{-0.42}$	
-0.40 -0.17 0.17 -0.43	

(with respect to the prediction from Sherpa) • With an associated significance of **5.3** (**3.2 σ** expected)

Data	161		
Total predicted	167	± 11	
WZjj-EW (signal)	44	± 11	
$WZjj-\mathrm{QCD}$	91	± 10	
Misid. leptons	7.8	\pm 3.2	
ZZjj-QCD	11.1	± 2.8	
tZj	6.2	± 1.1	
$t\bar{t} + V$	4.7	± 1.0	
$ZZjj-\mathrm{EW}$	1.80	0 ± 0.45	
VVV	0.59	0 ± 0.15	

• The fiducial cross-section is derived from the signal strength value, in a phase-space closely matching the SR definition (VBS fiducial phase-space):

$$\sigma^{fid.}_{WZjj-EW} = 0.57^{+0.14}_{-0.13}({
m stat.}\,)^{+0.07}_{-0.06}({
m syst.}\,)~{
m fb} = 0.57^{+0.16}_{-0.14}~{
m fb}$$

Louis Portales (LAPP / USMB) For the ATLAS Collaboration

_aboratoire d'Annecy de Physique des Particules