

LHCC Poster Session – CERN, February 27, 2019

Measurements of simplified fiducial cross sections for VH, $\rm H \rightarrow b \overline{b}$

Abstract

Based on 79.8 fb⁻¹ of proton-proton collision data at \sqrt{s} = 13 TeV collected by the ATLAS detector between 2015 and 2017, the *Simplified Template Cross Sections* (STXS) are measured in the simplified kinematic fiducial volumes based on the vector boson transverse momentum, which is directly related to the scale of momentum Q^2 that is transferred from the colliding protons to the VH system.^[1]

ATLAS Simulation Prelimina

VH, H \rightarrow bb and STXS framework ^[2,3]

VH production mode observed [4]

- Measured inclusive XS in good agreement with SM prediction
- Next step: more differential tests of the SM predictions
- STXS: measure XS for exclusive regions, categorized based on the kinematic properties of Higgs boson production (i.e. p_T^V)
- Reduce impact of theoretical uncertainties
- Isolate regions sensitive to new physics (higher $\ensuremath{p_T^V}\xspace)$
- VH, V \rightarrow leptons STXS measurement:
- $H \rightarrow b\bar{b}$ decay mode chosen (most sensitive)
- 5 STXS regions defined
- Signal and background separated by boosted-decision-tree discriminants (${\rm BDT}_{\rm VH})$
- 8 reco. signal regions (SR) defined based on N_{jet} , N_{lep} and $p_T^{V,r}$ (reconstructed p_T^V)
- 6 reco. control regions (CR) introduced to constrain some background processes

Reduced stage-1 STXS reconstruction

- Fraction of signal from each STXS signal region (x axis) in every reco. region (y axis) shown
- In each category, main contribution from the corresponding STXS signal region
- No dedicated reco. region for $150 < p_T^V < 250$ GeV and $p_T^V > 250$ GeV

Even without separate $p_T^{V,r}$ categories, BDT_{VH} provides discrimination between: 150 < p_T^V < 250 GeV and p_T^V > 250GeV

Measurements of reduced stage-1 STXS

- Maximum likelihood fit performed to measure XS
- Good agreement between data and SM prediction, dominant systematic uncer.:
- MC statistics and theoretical modelling of background processes

Constraints on the anomalous Higgs boson interactions

4 dimension-6 operators (\mathcal{O}_W , \mathcal{O}_B , \mathcal{O}_{HW} , and \mathcal{O}_{HB}) in the Strongly Interacting Light Higgs formulation^[5] directly affect the XS. Thus constraints could be set on the coefficients (c_W , c_B , c_{HW} , and c_{HB}).

In the "Higgs Effective Lagrangian" implementation ^[6], recast into the following dimensionless coefficients:

$$\bar{c}_{HW} = \frac{m_W^2}{g} \frac{c_{HW}}{\Lambda^2}$$
, $\bar{c}_{HB} = \frac{m_W^2}{g'} \frac{c_{HB}}{\Lambda^2}$, $\bar{c}_W = \frac{m_W^2}{g} \frac{c_W}{\Lambda^2}$, $\bar{c}_B = \frac{m_W^2}{g'} \frac{c_B}{\Lambda^2}$

Since the sum $\bar{c}_W + \bar{c}_B$ is already strongly constrained ^[7], constraints set on \bar{c}_{HW} , \bar{c}_{HB} and $\bar{c}_W - \bar{c}_B$

Both interference between SM and non-SM (linear term) and SM-independent (quadratic term) considered

· Separate likelihood fit for each parameter, assuming that the other two vanish

References

[1] ATLAS-CONF-2018-053[3] arXiv: 1605.04692 [hep-ex][5] JHEP 06 (2007) 045[2] arXiv: 1610.07922 [hep-ex][4] Phys. Lett. B 786 (2018) 59[6] JHEP 04 (2014) 110

[7] JHEP 06 (2018) 146

Changqiao LI, (Univ. of Sci. and Tech. of China & Laboratoire de Physique Nucléaire et de Hautes Energies - Paris) On behalf of the ATLAS Collaboraton

