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What is antimatter ? AL(;X

- For every particle there is a corresponding antiparticle with the same mass
and the opposite charge.

proton () (-) antiproton
neutron O O antineutron

electron e @ positron
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Matter-antimatter annihilation AL-(n%

When a matter particle comes into contact with its corresponding antimatter
particle they annihilate.

Time
A

Electron-positron annihilation:

N
/N

Proton-antiproton annihilation is more complex and typically produces
three charged pions.

2

E=mc
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The positron ALZHAA

- First predicted by Dirac in 1928 (although initially misunderstood).
- Observed in 1932 by Carl Andersons measurements of cosmic rays.

Slowed positron

Lead Plate

Incoming positron
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Sources of antimatter ALZHA

+
-Betadecay: p—n+e +YV,
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Sources of antimatter ALZHA

+
-Betadecay: p—n+e +YV, (

eg. K=" Ar+e" +v, -
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Sources of antimatter AL-(QX

- Beta decay: p%n+e++v6 ‘
eg. "K—=" Ar+e" +v, -

\-’"/

- Cosmic rays: high energy charged particles arrive at the earth from outer
space (mostly protons). Positrons can be produced by the interaction of these
particles with the earths atmosphere.

- Particle accelerators.

p+p—=p+p+p+p E=m ¢’

7 Daniel Maxwell - Swansea University




Applications of antimatter

- PET scanners. @
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Applications of antimatter

P

- PET scanners.

- A future fuel ......

Energy density comparison
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Standard Model
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Symmetries Al.

The physical laws described by the standard model have symmetries (only
CPT (Charge-Parity-Time) is exact).

Charge conjugation
swaps positive and

CHARGE negative charges

- velocity

negative charge positive charge

Parity reversal swaps up
and down, left and right,

forwards and backwards  pARITY

Antimatter experiments at CERN are testing these symmetries.
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Why are we interested in antimatter?
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HOT DENSE UNIVERSE
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ANTIMATTER

MATTER
DOMINATED

Why is the universe composed almost entirely of normal matter ?
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Why are we interested in antimatter? A._

@® Known [normal matter]
@ Known unknowns [dark matter]
@ Unknown unknowns [dark energy]

Antimatter ? : 0%

ANTIMATTER'S WHEN DID THIS
Gol'ﬁ MISSING... HAPPEN, SIR?
r

Daniel Maxwell - Swansea University

13




Antimatter at CERN

- High energy proton-proton
collisions in LHCb. Looking at the
relative amounts of matter and
antimatter produced to test the
symmetries of the standard model.

- Low energy experiments at the
antiproton decelerator (AD) facility.
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Antimatter in space ALZAA

- The AMS detector has measured the
flux of antiprotons to be 10,000 times
smaller than the proton flux.

- Heavy nuclei could originate from
regions of space with an abundance of

—

antimatter e.g. anti-stars! A o L
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Antiprotons at CERN AL
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Making antiprotons ALZAA

M
L Titanium alloy body graphite
26 GeV protons I '
beam > =
lozag] |
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v 55 mm
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ptp—=p+ptrp+p

Around 5x107 antiprotons are produced every 120s at an energy of 3.5 GeV
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The antiproton decelerator

ALZHA

The antiproton decelerator (AD) provides ~2x107 antiprotons every 120 s at

~5 MeV.
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Trapping antiparticles ALﬂ

- Like charges repel.

—

«—0 o0— F=qE

- Moving charged particles experience a force in a magnetic field:

/B
F=qVxB

e
X

- Combine these two effects in a Penning trap.
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Penning Trap

Traps are typically cooled down to ~4K
(-270 degrees C).

Modified Cyclotron ==
Motion
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=
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Magnetron Motion
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The ALPHA experiment A{n%

- ALPHA: Antihydrogen Laser PHysics Apparatus.

hydrogen antihydrogen
3 go(on) RSt 8 Antiproton #0)
Electron Positron
- Why antihydrogen?

- It's the simplest pure antimatter system.

- ltis electrically neutral.

- Hydrogen is very well understood theoretically, and
measurements of its properties have been performed to
extraordinary levels of precision.
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ALPHA-2 Apparatus AL

Antiproton “catching trap” Antihydrogen “atom trap”
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Catching antiparticles in the Penning traps AL

- Antiprotons from the AD are degraded from 5 MeV to 5 keV by a thin foil.

(a) m (b) ﬂ (C)ﬂ ﬂ

Potential

E. Butler PhD thesis.

ﬁ_ [ E— [ E— [E— _ﬁ

- Positrons from a radioactive sodium source are accumulated in a separate
trap.
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Imaging positrons and antiprotons ALZAA

~40 cm
8 / /
7

_Phosphor | Camera
L oomm

MCP \
Vacuum Window

4c¢

Light produced when particles hit a |
phosphor screen allows us to image the ™M™
particles.

Extracted
Particles
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Antihydrogen synthesis ALZHA

Solenoid A Electrodes Mirr/oy&oils Octupole S;)Ienoid B
Air [ \/ | Trap positrons and
Vacuum . . .
T S = — — antiprotons in adjacent
— L [HAT | [HT | < potential wells of a
— e LT e e g L .
Penning trap.
| 4
lAntiproton l Antihydrogen synthesis l Positron I \\\\\“Annih”ation
preparation and trapping preparation detector

- Slowly merge the particles (in 1s) by lowering the barrier between them.
- We typically mix 3 million positrons (at ~20K) with 90,000 antiprotons (at
~50K) forming around 50,000 antihydrogen atoms.
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Antihydrogen synthesis ALZHA
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“Antiproton  Antihydrogen synthesis _ Positron " Annihilation
preparation and trapping preparation detector

- Slowly merge the particles (in 1s) by lowering the barrier between them.
- We typically mix 3 million positrons (at ~20K) with 90,000 antiprotons (at
~50K) forming around 50,000 antihydrogen atoms.
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Antihydrogen synthesis ALZHA

Solenoid A Electrodes Mirror coils Octupole Solenoid B
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“Antiproton  Antihydrogen synthesis _ Positron " Annihilation
preparation and trapping preparation detector

- Slowly merge the particles (in 1s) by lowering the barrier between them.
- We typically mix 3 million positrons (at ~20K) with 90,000 antiprotons (at
~50K) forming around 50,000 antihydrogen atoms.
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Antihydrogen trapping

Antihydrogen is neutral — can’t trap with a Penning trap. We make
use of the fact that it is slightly magnetic (has a magnetic moment).

N
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Antihydrogen trapping

Solenoid A Electrodes Mirror coils Octupole Solenoid B
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The magnetic field at the trap center is
~1T, and the trap depth corresponds to
~0.5K.
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Antihydrogen detection ALﬂ

- We detect antihydrogen by ramping down the trap magnets to release
the atoms — we have to destroy the antihydrogen!

- Image the annihilation products with a silicon vertex detector.

- Event topology allows us to distinguish antiproton annihilations from
cosmic rays.

(a) (b)
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Antihydrogen accumulation AL'ILFIX

- Only trap ~20 atoms per experimental cycle!
- However, we can accumulate trapped antihydrogen and have trapped >1000
atoms this way.

70 ———

60 [

—e
\

50: 2 I‘:.

40§ .

30§ .

Number of I?I detected
\
\

20 | ——

10} 2

0 1 2 3 4 5
Number of mixing cycles

ALPHA Collaboration, Nat. Commes. 8, 681 (2017).
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Spectroscopy

Continuum

Hydrogen

Helium

Nitrogen
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Spectroscopy

A

- The discrete wavelengths correspond to transitions of an atoms internal

state.

33
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1S-2S transition ALZHA

—Trappable states
15 —Non-trappable states

‘ Measure the resonant frequency
of the 1S,-2S5, transition,

128 1 and compare with the expected
ot 1 value in hydrogen (in the same

1 trap environment).

12S,)

f c-b
(Microwave)
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1S-2S experiment setup
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The distance between the mirrors which are 1 m apart is controlled to within
50 nm to achieve constructive interference of the laser beam.
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1S-2S lineshape
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Measured resonance frequency is consistent with the expected
resonance frequency in hydrogen, and therefore consistent with CPT

invariance, to a precision of 2x107".
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Matter-antimatter comparisons AL

G. Schneider et al., Science 358, 1081 (2017)

(anti)proton g-factor

C. Smorra et al., Nature 550, 371 (2017)

matter

antimatter

A. Matveev et al., Phys. Rev. Lett. 110, 230801 (2013)
(anti)hydrogen 1S-2S

M. Ahmadi et al., Nature 557, 71 (2018)

N. F. Ramsey, Rev. Mod. Phys. 62, 541 (1990)

(anti)hydrogen GS HFS

M. Ahmadi et al., Nature 548, 66 (2017)
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Which way does antimatter fall
under the influence of gravity?

Never been measured
directly!

Create antihydrogen in a vertical
trap and release.

Measuring gravity with antimatter: ALPHA-g AL
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ALPHA-g

. Solenoid Magnets Heat-Shielded OVC
Physical Supports . Liquid Helium Spaces
. Vacuum Pumps and Components . Annihilation Detectors

Ultra-High Vacuum (UHV) Spaces . Electrodes under UHV
|:| Outer Vacuum Chamber (OVC)

ALPHA-g
Atom Traps

—p

ALPHA-II
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Positron
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Laser cooling to make very cold antimatter AL&

ik
. °V__> NN Photons carry momentum
_ Ik
Y m This momentum is transferred to the
b °_> atom which absorbs the photon

Make use of the Doppler effect to have a
c net friction force on the atoms

In 2018 we demonstrated this for the first time with antihydrogen — will

ultimately lead to more precise measurements of gravity and with
spectroscopy.
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Current state of antimatter research AL&

- Violations of CP symmetry have been measured, but these are not large
enough to explain the matter-antimatter asymmetry of the universe.

- Electromagnetic properties of antimatter are now starting to be measured
at levels of precision comparable to those measured in hydrogen.

- Whether antimatter falls up or down is not yet known!

- We still do not know why there is no significant amount of antimatter

observable in the universe!
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