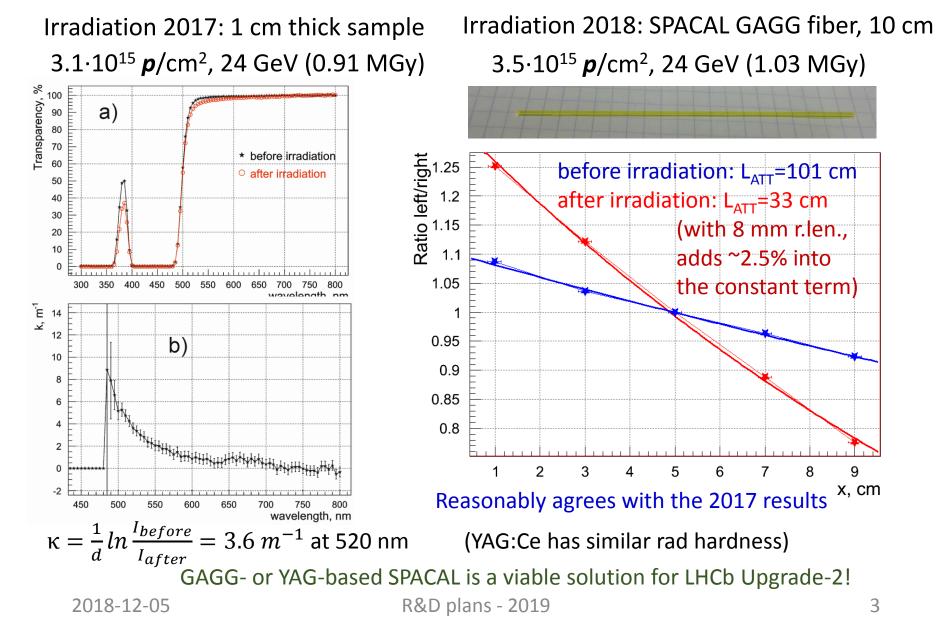
R&D plans for 2019

The SPACAL-RD group


LHCb ECAL, doses and 1 MeV neq (Matthias) ECAL 1MeV neg/cm2, Z=1260, 300 /fb ECAL doses @ EM shower max, Gy, 300 /fb 10¹⁶ 10⁶ ළ 300 ଞ୍ଚ 300 Ś Ś. 1.0e+03 10⁵ 200 200 10¹⁵ 1.0e+04 3.0e+13 10⁴ 100 100 .0e+04 1.0e+14 L0e+05 3.0e+1410¹⁴ 5e+0 HCb Preliminar) θ_{e+15} HCb Preliminan 10³ 0 0 -100 10² -10010¹³ -200 10 -200 10¹² -300 -300 -200 -100 0 100 200 -300 300 -300 -200 -100100 200 300 x, cm x, cm up to ~1 MGy in the centre up to $6 \cdot 10^{15}$ cm⁻² in the centre

(Shashlik is operational till 4·10⁴ Gy).

From simulation, we have to understand general requirements to the detector:

- occupancies, and how to mitigate them
 - detector zones
 - cell sizes, technologies, Molière radii, longitudinal segmentation etc
- Time measurements requirements and options

Radiation hard scintillating crystals - GAGG

Performance of technologies

To be studied:

SPACAL (no WLS – good option for high rad. zone)

- Angular dependence of energy resolution
- Optimization of sampling (fiber pitch, converter density)
- Intrinsic limitations on time measurement capability
 - shower fluctuations
 - scintillation process
 - light propagation in scintillating fibers
 - photodetector

Shashlik (good for the Outer zone(s))

(formally not SPACAL-RD, but also an important part of the future ECAL)

- Optimization of sampling (scintillator : converter)
- Intrinsic limitations on time measurement capability
 - shower fluctuations
 - scintillation process
 - light propagation in scintillator tiles
 - light absorption, re-emission and light propagation in WLS fibers
 - photodetector

2019-02-08

Andreas Schopper, SPACAL-RD meeting

Performance of components

Performance of optical components:

- GAGG
- YAG
- Plastic scintillators
- Plastic WLS fibers
- photodetector

In terms of:

- Radiation hardness
- Timing performance
- Constraints in dimension (for crystals)
- Cost

Performance of converter material:

- X0 and Molière radius
- Capability of tuning X0 and Molière radius (alloy)
- Flexibility and cost effectiveness for different geometries

outer zone(s)

innermost zone

Prototype studies

- Validation of simulation of SPACAL energy resolution
 - as function of angle and energy
- Performance of time measurement with SPACAL for electrons as function of
 - Scintillator type (GAGG or YAG)
 - Energy
 - Angle
 - longitudinal segmentation
- Performance of time measurement with Shashlik

Component studies

- Test bench measurements of GAGG and YAG
 - Light yield
 - Attenuation length
 - Scintillation kinetics (rise time, decay time)
- Photodetector studies
 - including samples irradiated to 1 MGy in 2018
- Development of different alloys for
 - tuning of XO and Molière radius
 - Lead/W alloys
 - Cu/W alloys
 - Identifying best technology for integrating fibers

Prototypes

Components that we have at hand:

- SPACAL Cu/W converter with given fiber density
- GAGG
 - ~280 fibers of 10cm length
 - one 2cm x 2cm cell with 2 sections (10cm long) in Z
 - ~250 additional fibers to come
 - not quite a complete cell of 2cm x 2cm (?)
 - Few tiles for accordion type module investigations
- YAG
 - ~200 old + 900 new fibers of 10cm length
 - total of 4 cells of 2cm x 2cm (with 2 sections in Z)
- Kuraray SCSF-78 fibers:
 - ~580 of 20 cm length (4 cells of 2cm x 2cm)
 - Additional 500m ordered (-100 m to reimburse DT)

Prototypes

We could factorize different studies by use of different prototypes

- the 20 cm long prototype filled with Kuraray fibers to study SPACAL energy resolution and angle dependence for the MC validation
- 1 cell (2x2 cm²) GAGG and YAG to study timing or
- 3cm x 3cm proto with GAGG and/or YAG with smaller cell size (e.g. 1cm?) to study timing
- 1 cell prototype (with smaller cell size?) to test photodiodes and other photodetectors
- Small prototype(s) to test different converter options

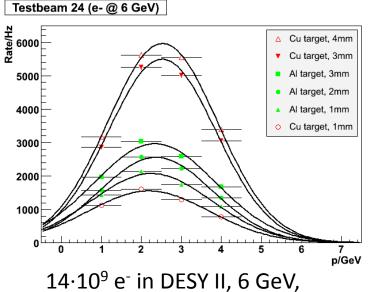
Components that we would need to order:

- GAGG?
- YAG?
- Pb/W converter for small prototype (3cmx3cm)?
- KURARAY WLS fibers (Y11)? quantities are under discussion

beam test 2019 - DESY

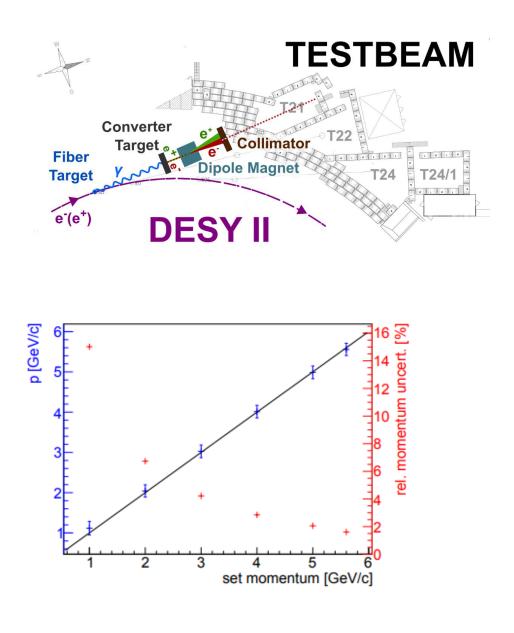
We have beam time at the TB24 line of DESY II: preliminarily, two weeks

DESY Test Beam Schedule 2019 - Version 3 11/01/2018 DRAFT

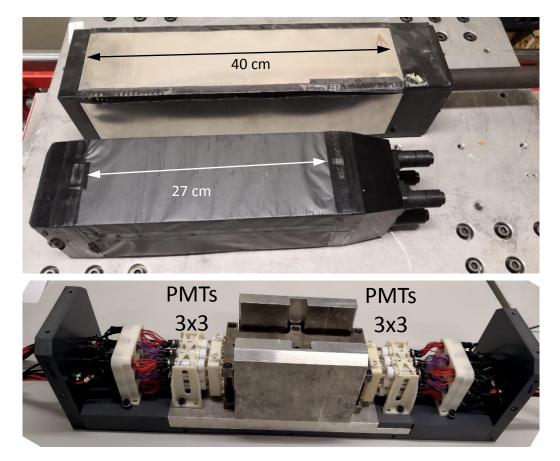


Ralf Diener, Norbert Meyners, Marcel Stanitzki - DESY Test Beam Coordinators

	Week		TB21		TB22		TB24/1		TB24		
				DATURA		DURANTS	PCMAG	Talascopa in PCMAG		ADALLA	
29-Jul-19	31		Summer Shutdown								
5-Aug-19	32		TBMST	×	SummerStudents	х			CALICE AHCAL	х	
12-Aug-19	33		BL4S	х	SummerStudents	х			BL4S	х	
19-Aug-19	34		TBMST	×	ATLAS-HGTD	x			CBM-TRD		
26-Aug-19	35		ELAD	x	SHIP-SplitCAL				CBM-TRD		
2-Sep-19	36		CM5-Pixel-Phase2		Setup Time						
9-Sep-19	37		CMS-Pixel-Phase2	x	ATLAS-ITk-Strips	x			CEPC-STFC	х	
16-Sep-19	38		AFP-TOF	x	Mu3e	х			CEPC-STFC	х	$ \land $
23-Sep-19	39		CLIC PIXEL	x	ATLAS-ITk-Pixel	х			TOTEM	х	/ \
30-Sep-19	40		X-Ray-Crystal-Rad	x	ATLAS-ITk-Pixel	х			ATLAS-BCM		
7-Oct-19	41								HEP for Teachers		DRAFT
14-Oct-19	42		BL4S	х	SHIP-SBT				BL4S	х	4
21-Oct-19	43		BL4S	х	SHIP-SciFi				BL45	х	
28-Oct-19	44		CMS-Pixel-Phase2	x	SHIP-SciFi				SHIP-Emulsion		
4-Nov-19	45		CMS-Pixel-Phase2	x	ATLAS-HGTD	x			LHCb-ECAL	х	$ \searrow $
11-Nov-19	46		ELAD	x	ATLAS-HGTD	х		1	LHCB-ECAL	x	
18-Nov-19	47				Setup Time						
25-Nov-19	48		CMS Outer Tracker	х	ATLAS-ITk-Strips	х			ATLAS-ITk-Pixel	х	
2-Dec-19	49		CMS Outer Tracker	х	ATLAS-ITk-Strips	х			ATLAS-ITk-Pixel	х	
9-Dec-19	50		ELIOT		CMS-Pixel-Phase2	х			Mu3e	х	
16-Dec-19	51	Beam 100 20/12 0800	ELIOT		CMS-Pixel-Phase2	х			CLIC PIXEL	х	
23-Dec-19	52					Shute	lown				
30-Dec-19	1					Shutt	IOWIT				


2019-02-15

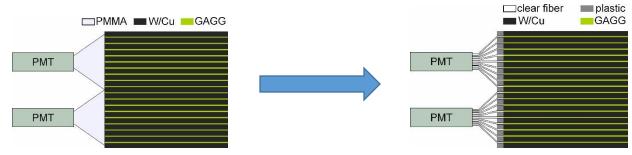
beam test 2019 - DESY



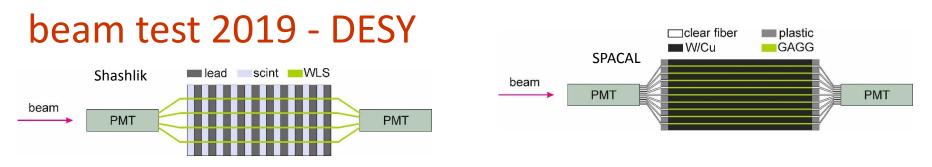
collimators @ 5x5 mm².

electrons or positrons reasonable rate (~kHz) at 3-4 GeV ~3% momentum uncertainty

Prototypes used for beam test – 2018

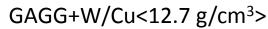

present ECAL module shashlik, Pb:Sc = 1:2 (vol) 25X₀ = 40cm; R_M=36mm

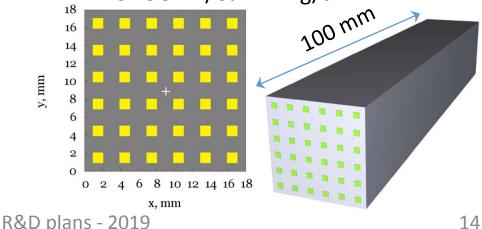
"short" shashlik module Pb:Sc = 1:1 (vol) $25X_0 = 27$ cm; R_M=27mm (produced in Protvino, 2017)


crystal/W SPACAL, *W:Sc* = 1:0.6, ~28X₀ = 20cm; R_M=16mm

beam test 2019 - DESY

- The measured SPACAL energy resolution is *better* than in MC
 - investigations are ongoing from both sides, MC and data analysis
 - there are few things in the setup which can affect calibration and measurement of energy resolution (now under study):
 - converter density
 - light cross talk, due to light guides design
 - calibration procedure(s)
 - to validate the MC, we may have to re-measure the resolution in a simpler configuration
 - only one sort of fibers (plastic)
 - modified light readout, to eliminate the cross talk and improve uniformity: replace PMMA cones with individual clear-PSM fiber for each GAGG fiber





- The time resolution of the prototypes (even of Shashlik, even with PMT readout) turned out to be reasonably good, but still worse than needed
 - there is an indication that it is largely due to the longitudinal fluctuations of shower
 - we can try to improve the resolution by reading out the same light ۲ from both front and back
 - the shower longitudinal position will be resolved
 - to be tested

For SPACAL, we can either use existing prototype (available, courtesy M. Korjik), or produce a new one

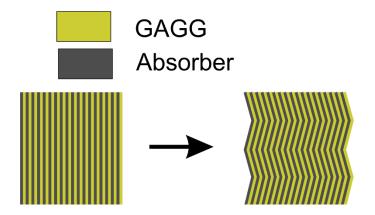
Absorber production R&D

The idea consists in baking the crystal fibers in W/Pb powder:

as crystal fibers can stand high temperature, this can be an attractive option.

R&D is ongoing in MISIS. The aim for 2019 is to build a 1-cell prototype, 10 cm long.

GaAs photodiode R&D

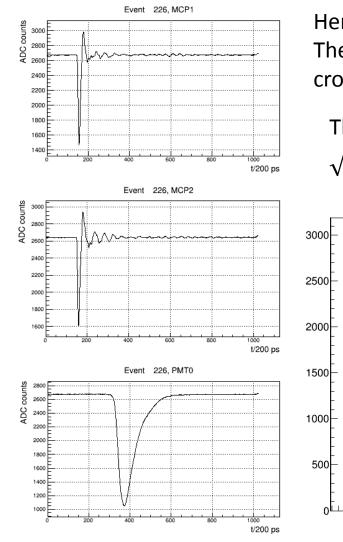

- Irradiation tests on MOCVD GaAs diodes with an active area of 4800 sq. microns carried out in 2017 with 24 GeV protons (the irradiation doses were 10, 30, 100 Mrad)
- all samples remained in good working order after irradiation
- measured increase in the generation current was a few tens of $\mu\text{A}/\text{cm}^2$ at irradiation dose of 100 Mrad
- The PIN photodiodes were then produced for subsequent studies, including irradiation.
 - The samples of GaAs photodiodes irradiated in 2018 up to ~1 MGy are on the way to Moscow for measurements.

SPACAL & Accordion

In order to improve the SPACAL performance at incident angles ~90°: the front section can be built as an Accordion-like structure.

The scintillating element:

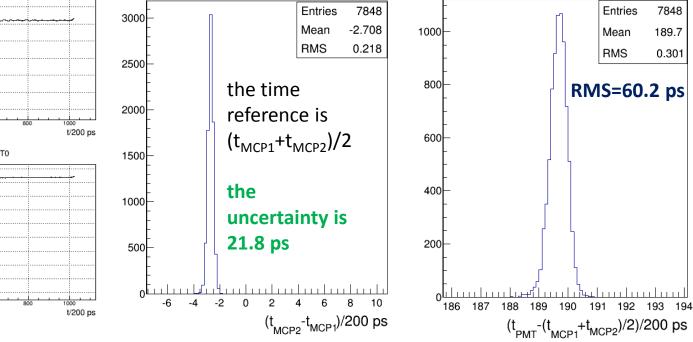
- can have cross section ~ 10x1 mm²;
- the GAGG refraction index is ~1.9


- at bending angles ~10° most of the light will be kept by total internal reflection
- eventual difference between the light yield of the sections can be compensated, e.g., by varying the section's thickness

The absorber:

- for the front section, the showers are narrow -> Lead can be considered
- the scintillating element can be produced by
 - gluing of pieces (produced, R&D is ongoing in FOMOS, Moscow)
 - welding
 - or continuous cut from ingot

spares


Time measurements – I

Here: standard shashlik, 30 GeV electrons, PMT readout The time measurement: moment of time, corresponding to crossing of 50% of amplitude ("offline CFD").

The ECAL module time resolution for 30 GeV:

$$\sqrt{60.2^2 - 21.8^2} \approx 56.1 \, \text{ps}$$

2019-02-12

Time measurements – II

Present ECAL module with present PMT readout (R7899-20)

E, GeV		<t>, ns</t>	σ(t), ps	
20	APD @ 385V	17.4	77	worse than PMT?
20	PMT @ 800V	37.9	69	
30	PMT @ 800V	37.9	56	
30	PMT @ 750V	38.6	57	
30	PMT @ 700V	40.0	77	noise contribution?

Time measurements – II

Short Shashlik module with present PMT readout (R7899-20) Here, tests were done with beam entering from front and from back (PMT side)

Such a big difference suggests that the time resolution is mainly determined by longitudinal shower fluctuations. For two identical showers started at z and z+ Δz , the time difference is $\frac{\Delta z}{c}(n-1)$ for normal beam direction and $\frac{\Delta z}{c}(n+1)$ otherwise (n is the refractive index of the WLS fibres of Shashlik, n≈1.59).

The time resolution is not much better than with present ECAL

a noisy PMT was accidentally installed

Time measurements – III

SPACAL module with PMT readout (R12421), GAGG section

E, GeV		<t>, ns</t>	σ(t) <i>,</i> ps
20	PMT @ 630V	27.5	85
20	PMT @ 730V	26.1	78

The time resolution is modest. However the beam enters from the back side (see previous slide). For a different configuration, with a beam entering from "front", one can expect 2-3 times better (30-40 ps), if the speculations at the previous slide are valid and the time resolution is mainly determined by longitudinal shower fluctuations.

	Y ₃ Al₅O ₁₂ :Ce (YAG)*	Lu₃Al₅O₁₂: Ce (LuAG)*	Gd ₃ Al ₂ Ga ₃ O ₁₂ : Ce (GAGG)**	Lu ₂ SiO ₅ :Ce (LSO)
density (g/cm ³)	4.57	6.73	6.63	7.4
X _o (cm)	3.5 cm	1.3	1.59	1.1
Refraction index	1.83	1.84	1.85	1.82
Λ _{max} (nm)	550	535	520	420
LY @ RT (ph/MeV)	35000	25000	50000	30000
decay time (ns)	70 + slow component	70 + slow component	60 + slow component	40

Requirements to the detector

From simulation, we have to understand general requirements to the detector:

- radiation doses (mostly known from FLUKA simulations by Gloria and Matthias)
- occupancies, and how to mitigate them
 - detector zones, cell sizes
 - required detector structure in each zone (technologies, Molière radii, longitudinal segmentation *etc*)
- Also contribute to the resulting detector structure
 - time measurement requirements to disentangle pileup
 - time measurement algorithms
 - and their implementation into electronics