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Introduction

(One of) the main problems for particle physics in the 21 century:
Why are there 3 generations and what explains fermion properties?
What mechanics?
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I.Rabi: “Who ordered that?”
(In response to the news that a recently discovered muon is not a hadron).

M. I. Vysotsky, ITEP Flavor physics and CPV 2/96



Mendeleev’s table

Dmitry Mendeleev, professor of St. Petersburg University, discovered his Periodic
Table in 1869, 150 years ago. He put there 63 existing elements and predicted 4
new elements.This 19th century discovery was explained by QM in the beginning
of the 20th century. Let us hope that an explanation of the Table of Elementary
Particles in general and a flavor problem in particular will be found in this century.
Much in common: W,Z,H with their masses were predicted as well. But: what
is an analog of QM?
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More generations?

Speculations on the 4th generation were very popular

Why only 3?

However: invisible Z boson width:

f̄

f

e−

e+
Z

ΓZ→ff =
GFM

3
Z

6
√

2π
[(gfV )2 + (gfA)2] = 332[(gfV )2 + (gfA)2] MeV .

(νe, νµ, ντ ):

Γtheor
Z→νν = 3 · 332[

1

4
+

1

4
] = 498 MeV ,

Γ
exp
inv = 499± 1.5 MeV .

ν4 is not allowed - so, no 4th generation.

BUT: what if m(ν4) > MZ/2?
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In H production at LHC the following diagram dominates:

t

t

t
H

p

p

and for 2mt >> MH the corresponding amplitude does not depend on mt.
In case of the 4th generation T− and B− quarks contribute, so the amplitude
triples and the cross section of H production at LHC becomes 9 times larger than
in SM, which is definitely excluded.

Problem 1

At LHC the values of signal strength µf ≡ σ(pp −→ H +X) ∗Br(H −→ f)/()SM
are measured. What will be the change in µf in case of the fourth generation?

M. I. Vysotsky, ITEP Flavor physics and CPV 5/96



Why Nq = Nl?

Nq = Nl in order to compensate chiral anomalies, which violate conservation of
gauge axial currents, making theory nonrenormalizable.
Case of QED:

a) b)

e

µ

e

µ

e

e

ee

JJ
55

γγγγ

Unlike QED, SM deals with Weyl fermions and gauge bosons Ai and B interact
with axial currents. In each generation the quarkonic and leptonic A2

iB and B3

triangles compensate each other, that is why Nq should be equal to Nl.

Problem 2

Prove that quarkonic triangles cancel the leptonic ones when Qe = −Qp (so
hydrogen atoms are neutral) and Qn = Qν = 0 (thus neutrino and neutron are
neutral).
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The CKM matrix - where from?

In constructing the Standard Model Lagrangian the basic ingredients are:

1 gauge group

2 particle content

3 renormalizability of the theory.

There is no such a building block in the Standard Model as CKM matrix in charged
current quark interactions.

LSM = −1
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L + ūiRD̂u

i
R + d̄iRD̂d

i
R + L̄iLD̂L

i
L + l̄iRD̂l

i
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+
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k
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ik Q̄

i
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k
RH̃ + f

(ν)
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(l)
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k
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i
RC

+Nk
R + c.c.

]
D̂ ≡ Dµγµ , Dµ = ∂µ − igsGiµλi/2− igAiµσi/2− ig′BµY/2

CKM matrix originates from Higgs field interactions with quarks.
(all quark fields are primed: QL → Q

′

L, uR → u
′

R, ...)
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CKM matrix originates from Higgs field interactions
with quarks.

The piece of the Lagrangian from which the up quarks get their masses looks like:

∆Lup = f
(u)
ik Q̄i

′

Lu
k′

RH + c.c. , i, k = 1, 2, 3 ,

where

Q1′
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)
L
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)
L

, Q3′

L =

(
t′

b′

)
L

;

u1′

R = u′R , u2′

R = c′R , u3′

R = t′R

and H is the Higgs doublet:

H =

(
H0

H−

)
.
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The piece of the Lagrangian which is responsible for the down quark masses looks
the same way:

∆Ldown = f
(d)
ik Q̄

i′

Ld
k′

R H̃ + c.c. ,

where
d1′

R = d′R , d2′

R = s′R , d3′

R = b′R and H̃a = εabH
∗
b ,

εab =

(
0 1
−1 0

)
.

After SU(2) × U(1) symmetry breaking by the Higgs field expectation value
< H0 >= v, two mass matrices emerge:

M ik
upū

i′

Lu
k′

R +M ik
downd̄

i′

Ld
k′

R + c.c.

The matrices Mup and Mdown are arbitrary 3×3 matrices; their matrix elements
are complex numbers. According to the very useful theorem, an arbitrary matrix
can be written as a product of the hermitian and unitary matrices:

M = UH , where H = H+ , and UU+ = 1 ,

(do not mix the hermitian matrix H with the Higgs field!) which is analogous to
the following representation of an arbitrary complex number:

a = eiφ|a| .
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Matrix M can be diagonalized by 2 different unitary matrices acting from left and
right:

ULMU+
R = Mdiag =

 mu 0
mc

0 mt

 ,

where mi are the real numbers (if matrix M is hermitian (M = M+) then we
will get UL = UR, case of QM). Having these formulas in mind, let us rewrite the
up-quarks mass term:

ūi
′

LMiku
k′

R + c.c. ≡ ū′LU+
L ULMU+

RURu
′
R + c.c. = ūLMdiaguR + c.c. = ūMdiagu ,

where we introduce the fields uL and uR according to the following formulas:

uL = ULu
′
L , uR = URu

′
R .

Applying the same procedure to matrixMdown we observe that it becomes diagonal
as well in the rotated basis:

dL = DLd
′
L , dR = DRd

′
R .

Thus we start from the primed quark fields and get that they should be rotated
by 4 unitary matrices UL, UR, DL and DR in order to obtain unprimed fields
with diagonal masses.
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Since kinetic energies and interactions with the vector fields A3
µ, Bµ and gluons are

diagonal in the quark fields, then these terms remain diagonal in a new unprimed
basis. The only term in the SM Lagrangian where matrices U and D show up is
charged current interactions with the emission of W -boson:

∆L = gW+
µ ū
′
Lγµd

′
L = gW+

µ ūLγµULD
+
LdL ,

and the unitary matrix V ≡ ULD+
L is called Cabibbo-Kobayashi-Maskawa

(CKM) quark mixing matrix.
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Parametrization of the CKM matrix: angles, phases,
unitarity triangles

n × n unitary matrix has n2/2 complex or n2 real parameters. The orthogonal
n × n matrix is specified by n(n − 1)/2 angles (3 Euler angles in case of O(3)).
That is why the parameters of the unitary matrix are divided between phases and
angles according to the following relation:

n2 = n(n−1)
2 + n(n+1)

2 .

angles phases

Are all these phases physical observables or, in other words, can they be measured
experimentally?
The answer is “no” since we can perform phase rotations of quark fields
(uL → eiζuL, dL → eiξdL ...) removing in this way 2n− 1 phases of the CKM
matrix. The number of unphysical phases equals the number of up and down
quark fields minus one. The simultaneous rotation of all up-quarks on one and
the same phase multiplies all the matrix elements of matrix V by (minus) this
phase. The rotation of all down-quark fields on one and the same phase acts on
V in the same way. That is why the number of the “unremovable” phases of
matrix V is decreased by the number of possible rotations of up and down
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quarks minus one.

Finally for the number of observable phases we get:

n(n+ 1)

2
− (2n− 1) =

(n− 1)(n− 2)

2
.

As you see, for the first time one observable phase arrives in the case of 3
quark-lepton generations.
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A bit of history

Introduced in 1963 by Cabibbo angle θc in a modern language mixes d- and s-
quarks in the expression for the charged quark current:

J+
µ = ūγµ(1 + γ5)[d cos θc + s sin θc] .

In this way he related the suppression of the strange particles weak decays to
the smallness of angle θc, sin2 θc ≈ 0.05. In order to explain the suppression
of K0 − K̄0 transition GIM mechanism (and c-quark) was suggested in 1970.
After the discovery of a charm quark in 1974 it was confirmed that 2 quark-lepton
generations exist. The mixing of two quark generations is described by the unitary
2×2 matrix parametrised by one angle and zero observable phases. This angle is
Cabibbo angle.
However, even before the c-quark discovery in 1973 Kobayashi and Maskawa
noticed that one of the several ways to implement CP-violation in the Standard
Model is to postulate the existence of 3 quark-lepton generations since for the
first time the observable phase shows up for n = 3. At that time CPV was
known only in neutral K-meson decays and to test KM mechanism one needed
other systems. Almost 30 years after KM model was suggested it was confirmed
in B-meson decays.
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(uct)L

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 d
s
b


L

Standard parametrization:

V = R23 ×R13 ×R12 ,

R23 =

 1 0 0
0 c23 s23

0 −s23 c23

 ,

R13 =

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 , R12 =

 c12 s12 0
−s12 c12 0

0 0 1

 ,

and, finally:

V =

 c13c12 c13s12 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s12s13s23e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − c23s13s12e

iδ c23c13

 .
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Wolfenstein parametrization

Let us introduce new parameters λ, A, ρ and η according to the following
definitions:

λ ≡ s12 , A ≡ s23

s2
12

, ρ =
s13

s12s23
cos δ ,

η =
s13

s12s23
sin δ ,

and get the expressions for Vik through λ, A, ρ and η:

V =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ≈
 1− λ2/2 λ Aλ3(ρ− iη)
−λ− iA2λ5η 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 − iAλ4η 1

 .

In the last expression the expansion in powers of λ is made.
The last form of CKM matrix is very convenient for qualitative estimates.
Approximately we have: λ ≈ 0.225, A ≈ 0.83, η ≈ 0.36, ρ ≈ 0.15.
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Unitarity triangles; FCNC

The unitarity of the matrix V (V +V = 1) leads to the following six equations
that can be drawn as triangles on a complex plane (under each term in these
equations the power of λ entering it, is shown):

V ∗udVus + V ∗cdVcs + V ∗tdVts = 0 s→ d
∼ λ ∼ λ ∼ λ5

V ∗udVub + V ∗cdVcb + V ∗tdVtb = 0 b→ d
∼ λ3 ∼ λ3 ∼ λ3

V ∗usVub + V ∗csVcb + V ∗tsVtb = 0 b→ s
∼ λ4 ∼ λ2 ∼ λ2

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0 c→ u

∼ λ ∼ λ ∼ λ5

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0

∼ λ3 ∼ λ3 ∼ λ3

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0

∼ λ4 ∼ λ2 ∼ λ2
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Among these triangles four are almost degenerate: one side is much shorter than
two others, and two triangles have all three sides of more or less equal lengths, of
the order of λ3. These two nondegenerate triangles almost coincide.
So, as a result we have only one nondegenerate unitarity triangle; it is usually
described by a complex conjugate of our equation:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

and it is shown in the Figure. It has the angles which are called β, α and γ. They
are determined from CPV asymmetries in B-mesons decays.

γ

α

β

V
cd

V
cb

*

V
ud

V
ub

*
V

td
V

tb

*

Unitarity triangle
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Looking at the Figure one can easily obtain the following formulas:

β = π − arg
V ∗tbVtd
V ∗cbVcd

= φ1

α = arg
V ∗tbVtd
−V ∗ubVud

= φ2

γ = arg
V ∗ubVud
−V ∗cbVcd

= φ3

Angle β was measured through time dependent CPV asymmetry in
Bd → charmonium K0 decays,

Angle α has been measured from CPV asymmetries in Bd → ππ, ρρ and πρ
decays,

B± decays are used to determine angle γ.
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Multiplying any quark field by an arbitrary phase and absorbing it by CKM matrix
elements we do not change some unitarity triangles, while the others are rotating
as a whole, preserving their shapes and areas. For the area of any of unitarity
triangle we get:

A = 1/2Im(a · b∗) = 1/2|a| · |b| · sinα,
where a and b are the sides of the triangle.

Problem 3
Prove that the areas of all unitarity triangles are the same. Hint: Use equations
from slide 17.
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Cecilia Jarlskog’s invariant

An area of unitarity triangles contains an important information about the
properties of CKM matrix.
CPV in the SM is proportional to this area, which equals 1/2 of the Jarlskog
invariant J .

Writing J = Im(VudV
∗
ubV

∗
cdVcb) we see, that J is not changed when quark fields

are multiplied by arbitrary phases.

The source of CPV in the SM is the phase δ - correct; BUT it is like a phantom.
If somebody says that the source of CPV is the phase of Vtd, then another one
can rotate d-quark, or t-quark, or both making Vtd real.
However, there is invariant quantity, which is not a phantom - J .
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CP: history
Landau thought that space-time symmetries of a Lagrangian should be that of
an empty space: shift symmetry - energy and momentum conservation, rotation
symmetry - angular momentum conservation. In 1956 Lee and Yang – in order to
solve θ − τ problem – suggested that P-parity is broken in weak interactions.
This was unacceptable for Landau: empty space has left-right interchange sym-
metry, so a Lagrangian should have it as well. Then Ioffe, Okun and Rudik noted
that Lee and Yang’s theory violates charge conjugation symmetry (C) as well,
while CP is conserved explaining the difference of life times of KL and KS a-la
Gell-Mann and Pais but with CP replacing C.
Just at this point Landau found the way to resurrect P-invariance stating that the
theory should be invariant under the product of P reflection and C conjugation.
He called this product the combined inversion and according to him it should
substitute P -inversion broken in weak interactions. In this way the theory should
be invariant when together with changing the sign of the coordinate, r̄ → −r̄, one
changes an electron to positron, proton to antiproton and so on. Combined parity
instead of parity.
It is clearly seen from 1957 Landau paper that CP-invariance should become a
basic symmetry for physics in general and weak interactions in particular.
Nevertheless L.B.Okun considered the search for KL → 2π decay to be one of the
most important problems in weak interactions.
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PV

Landau’s answer to the question “Why is parity violated in weak interactions”
was: because CP, not P is the fundamental symmetry of nature.
A modern answer to the same question is: because in P-invariant theory with
the Dirac fermions the gauge invariant mass terms can be written for quarks and
leptons which are not protected from being of the order of MGUT or MPlanck. So
in order to have our world made from light particles P-parity should be violated,
thus Weyl fermions should be used.
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CPV

KL → 2π decay discovered in 1964 by Christenson, Cronin, Fitch and Turlay
occurs due to CPV in the mixing of neutral kaons (ε̃ 6= 0). Only thirty years later
the second major step was done: direct CPV was observed in kaon decays:

Γ(KL → π+π−)

Γ(KS → π+π−)
6= Γ(KL → π0π0)

Γ(KS → π0π0)
, ε′ 6= 0 .

In the year 2001 CPV was for the first time observed beyond the decays of neutral
kaons: the time dependent CP-violating asymmetry in B0 decays was measured:

a(t) =
dN(B0 → J/ΨKS(L))/dt− dN(B̄0 → J/ΨKS(L))/dt

dN(B0 → J/ΨKS(L))/dt+ dN(B̄0 → J/ΨKS(L))/dt
6= 0 .

Finally, this year (2019) direct CPV was found in D0(D̄0) decays to
π+π−(K+K−).
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Since 1964 we have known that there is no symmetry between particles and an-
tiparticles. In particular, the C-conjugated partial widths are different:

Γ(A→ BC) 6= Γ(Ā→ B̄C̄) .

However, CPT (deduced from the invariance of the theory under 4-dimensional
rotations) remains intact. That is why the total widths as well as the masses of
particles and antiparticles are equal:

MA = MĀ , ΓA = ΓĀ (CPT) .

The consequences of CPV can be divided into macroscopic and microscopic.
CPV is one of the three famous Sakharov’s conditions to get a charge
nonsymmetric Universe as a result of evolution of a charge symmetric one. In
these lectures we will not discuss this very interesting branch of physics, but will
deal with CPV in particle physics where the data obtained up to now confirm
Kobayashi-Maskawa model of CPV. New data which should become available in
coming years may as well disprove it clearly demonstrating the necessity of
physics beyond the Standard Model.
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CPV and complex couplings 1

The next question I would like to discuss is why the phases are relevant for CPV.

∆L = gūLγµV dLWµ + gd̄LγµV
+uLW

∗
µ

In the SM charged currents are left-handed. Under space inversion (P) they
become right-handed. Under charge conjugation (C) left-handed charged
currents become right-handed as well and field operators become complex
conjugate.

So, weak interactions are P- and C-odd.

However, CP transforms the left-handed current to left-handed, so the theory
can be CP-even. If all coupling constants in the SM Lagrangian were real then,
being hermitian, Lagrangian would be CP invariant.

Since coupling constants of charged currents are complex (there is the CKM
matrix V ) CP invariance is violated. But when complex phases can be absorbed
by field operators redefinition there is no CPV (the cases of one or two
quark-lepton generations).
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CPV and complex couplings 2

LW =
g√
2
ūγµ

1 + γ5

2
V dWµ +

g√
2
d̄γµ

1 + γ5

2
V +uW ∗µ

Pψ = iγ0ψ , P (W0,Wi) = (W0,−Wi)

ū(γ0, γi)d→ ū(γ0,−γi)d
ū(γ0γ5, γiγ5)d→ ū(−γ0γ5, γiγ5)d

LPW =
g√
2
ūγµ

1− γ5

2
V dWµ +

g√
2
d̄γµ

1− γ5

2
V +uW ∗µ ,

Cψ = γ2γ0ψ̄ , C(W0,Wi) = −(W ∗0 ,W
∗
i )

LCW =
g√
2
d̄γµ

1− γ5

2
V TuW ∗µ +

g√
2
ūγµ

1− γ5

2
V ∗dW ∗µ

LCP
W =

g√
2
d̄γµ

1 + γ5

2
V TuW ∗µ +

g√
2
ūγµ

1 + γ5

2
V ∗dWµ

Real V : LCP
W = LW , no CPV.

Complex V : it can not be made real by ui → eiαiui, dj → eiβjdj when Ngen ≥ 3
– all phases can not be eliminated and CP is violated.
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M0 − M̄0 mixing; CPV in mixing
In order to mix, a meson must be neutral and not coincide with its antiparticle.
There are four such pairs:

K0(s̄d)− K̄0(sd̄) , D0(cū)− D̄0(c̄u) ,

B0
d(b̄d)− B̄0

d(bd̄) and B0
s (b̄s)− B̄0

s (bs̄) .

Mixing occurs in the second order in weak interactions through the box diagram
which is shown here for K0 − K̄0 pair.

s u, c, t d

d u, c, t s

W WK0 K̄0

The effective 2× 2 Hamiltonian H is used to describe the meson-antimeson
mixing. It is most easily written in the following basis:

M0 =

(
1
0

)
, M̄0 =

(
0
1

)
.
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The meson-antimeson system evolves according to the Shroedinger equation
with this effective Hamiltonian which is not hermitian since it takes meson
decays into account. So, H = M − i

2Γ, where both M and Γ are hermitian.
According to CPT invariance the diagonal elements of H are equal:

< M0 | H |M0 >=< M̄0 | H | M̄0 > .

Substituting into the Shroedinger equation

i
∂ψ

∂t
= Hψ

ψ – function in the following form:

ψ =

(
p
q

)
e−iλt

we come to the following equation: M − i
2Γ M12 − i

2Γ12

M∗12 − i
2Γ∗12 M − i

2Γ

 p

q

 = λ

 p

q


from which for eigenvalues (λ±) and eigenvectors (M±) we obtain:

λ± = M − i

2
Γ±

√
(M12 −

i

2
Γ12)(M∗12 −

i

2
Γ∗12) ,
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{
M+ = pM0 + qM̄0

M− = pM0 − qM̄0 ,
q

p
=

√
M∗12 − i

2Γ∗12

M12 − i
2Γ12

.

If there is no CPV in mixing, then:

< M0 | H | M̄0 >=< M̄0 | H |M0 > ,

M12 −
i

2
Γ12 = M∗12 −

i

2
Γ∗12 ,

and

q

p
= 1 , < M+ |M− >= 0 (in case of kaons M+ = K0

1 ,M− = K0
2 ).

However, even if the phases of M12 and Γ12 are nonzero but equal (modulo π)
we can eliminate this common phase rotating M0.
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We observe the one-to-one correspondence between CPV in mixing and
nonorthogonality of the eigenstates M+ and M−. According to Quantum
Mechanics if two hermitian matrices M and Γ commute, then they have a
common orthonormal basis. Let us calculate the commutator of M and Γ:

[M,Γ] =

 M12Γ∗12 −M∗12Γ12 0

0 M∗12Γ12 −M12Γ∗12

 .

It equals zero if the phases of M12 and Γ12 coincide (modulo π). So, for
[MΓ] = 0 we get | q/p |= 1, < M+ |M− >= 0 and there is no CPV in the
meson-antimeson mixing. And vice versa.

Problem 4

CPV in kaon mixing. According to the diagram on slide 28 Γ12 ∼ (V ∗udVus)
2.

Find an analogous expression for M12. Use unitarity of the matrix V and
eliminate V ∗cdVcs from M12. Observe that the quantity M12Γ∗12 −M∗12Γ12 is
proportional to the Jarlskog invariant J = Im(V ∗udVusVtdV

∗
ts).
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Introducing quantity ε̃ according to the following definition:

q

p
=

1− ε̃
1 + ε̃

,

we see that if Re ε̃ 6= 0, then CP is violated. For the eigenstates we obtain:

M+ =
1√

1+ | ε̃ |2

[
M0 + M̄0

√
2

+ ε̃
M0 − M̄0

√
2

]
,

M− =
1√

1+ | ε̃ |2

[
M0 − M̄0

√
2

+ ε̃
M0 + M̄0

√
2

]
.

If CP is conserved, then Re ε̃ = 0, M+ is CP even and M− is CP odd. If CP is
violated in mixing, then Re ε̃ 6= 0 and M+ and M− get admixtures of the
opposite CP parity and become nonorthogonal.
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Outline

Introduction: Why Nq = Nl and why we are sure that Ng = 3.

Cabibbo-Kobayashi-Maskawa (CKM) matrix, unitarity triangles.

CP, CP violation.

M0 − M̄0 mixing, CPV in mixing.

Neutral kaons: mixing (∆mLS) and CPV in mixing (ε̃).

Direct CPV in K0 decays.

Direct CPV in D and B decays.

Constraints on the Unitarity Triangle.

B0, B0
s mixing.

CPV in B mixing.

CPV in interference of mixing and decays, B0(B̄0)→ J/ΨK, angle β.

Υ(4S)→ B0B̄0 → J/ΨKS J/ΨKS .

b→ sg → sss̄.

Bs(B̄s)→ J/Ψφ.

Angles α and γ.

CKM fit.

Perspectives.
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K0 − K̄0 mixing, ∆mLS

Γ12 for the K0 − K̄0 system is given by the absorptive part of the diagram
below. With our choice of CKM matrix Vus and Vud are real, so Γ12 is real.

s u d

d u s

W WK0 K̄0
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M12 is given by a dispersive part of the following diagram:

s u, c, t d

d u, c, t s

W WK0 K̄0

Now all three up quarks should be taken into account.
To calculate this diagram it is convenient to implement GIM
(Glashow-Illiopulos-Maiani) compensation mechanism from the very beginning,
subtracting zero from the sum of the fermion propagators:

VusV
∗
ud

p̂−mu
+
VcsV

∗
cd

p̂−mc
+
VtsV

∗
td

p̂−mt
−

∑
i

VisV
∗
id

p̂
.
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Since u-quark is massless with good accuracy, mu ≈ 0, then its propagator drops
out and we are left with the modified c- and t-quark propagators:

1

p̂−mc,t
−→ m2

c,t

(p2 −m2
c,t)p̂

.

The modified fermion propagators decrease in ultraviolet so rapidly that one can
calculate the box diagrams in the unitary gauge, where W -boson propagator is
(gµν − kµkν/M2

W )/(k2 −M2
W )

We easily get the following estimates for three remaining diagram contributions
in M12:

(cc) : λ2(1− 2iηA2λ4)G2
Fm

2
c ,

(ct) : λ6(1− ρ+ iη)G2
Fm

2
c ln(

mt

mc
)2 ,

(tt) : λ10(1− ρ+ iη)2G2
Fm

2
t .

Since mc ≈ 1.3 GeV and mt ≈ 175 GeV we observe that the cc diagram
dominates in ReM12 while ImM12 is dominated by (tt) diagram.
M12 is mostly real:

ImM12

ReM12
∼ λ8

(
mt

mc

)2

∼ 0.1 .

M. I. Vysotsky, ITEP Flavor physics and CPV 36/96



The explicit calculation of the cc exchange diagram gives:

Leff
∆s=2 = − g4

29π2M4
W

(s̄γα(1 + γs)d)2η1m
2
cV

2
csV
∗2
cd ,

where g is SU(2) gauge coupling constant, g2/8M2
W = GF /

√
2, and factor η1

takes into account the hard gluon exchanges. Since

M12 −
i

2
Γ12 =< K0 | Heff | K̄0 > /(2mK)

(here Heff = −Leff∆s=2) we should calculate the matrix element of the product
of two V −A quark currents between K̄0 and K0 states. Using the vacuum
insertion we obtain:

< K0 | s̄γα(1 + γ5)ds̄γα(1 + γ5)d | K̄0 >=

=
8

3
BK < K0 | s̄γα(1 + γs)d | 0 > ×

< 0 | s̄γα(1 + γ5)d | K̄0 >= −8

3
BKf

2
Km

2
K ,

where BK = 1 if the vacuum insertion saturates this matrix element.
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From the last equation on slide 29 we obtain:

mS −mL −
i

2
(ΓS − ΓL) = 2[ReM12 −

i

2
Γ12] ,

where S and L are the abbreviations for KS and KL, short and long-lived
neutral K-mesons respectively. For the difference of masses we get:

mL −mS ≡ ∆mLS =
G2
FBKf

2
KmK

6π2
η1m

2
c |V 2

csV
∗2
cd | .

Constant fK is known from K → lν decays, fK = 160 MeV. Gluon dressing of
the box diagrams in 4 quark model in the leading logarithmic (LO)
approximation gives ηLO1 = 0.6. It appears that the subleading logarithms are
numerically very important, ηNLO1 = 1.3± 0.2, the number which we will use in
our estimates. We take BK = 0.8± 0.1 assuming that the vacuum insertion is
good numerically, though the smaller values of BK can be found in literature as
well.
Experimentally the difference of masses is:

∆mexp
LS = 0.5303(9) · 1010 sec−1 .

Substituting the numbers we get:

∆mtheor
LS

∆mexp
LS

= 0.5± 0.2 ,

M. I. Vysotsky, ITEP Flavor physics and CPV 38/96



and we almost get an experimental number from the short-distance contribution
described by the box diagram with c-quarks. As Vcs and Vcd are already known
nothing new for CKM matrix elements can be extracted from ∆mLS .
However, the very existence of a charm quark and its mass below 2 GeV were
predicted BEFORE 1974 November revolution (J/Ψ(cc̄) discovery, MJ/Ψ = 3.1
GeV) from the value of ∆mLS .

Concerning the neutral kaon decays we have:

ΓS − ΓL = 2Γ12 ≈ ΓS = 1.1 · 1010 sec−1 (∆mLS ≈ ΓS/2) ,

since ΓL � ΓS , ΓL = 2 · 107 sec−1. KL is so long-lived because it can decay only
into 3 particles final states (neglecting CPV)
KS rapidly decays to two pions which have CP= +1.

D0 − D̄0 mixing is established but it is very small: ∆m/Γ,∆Γ/Γ ∼ 10−3. One of
the reasons is the absence of Cabbibo suppression of c-quark decay.
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CPV in K0 − K̄0 : KL → 2π , εK-hyperbola

CPV in K0 − K̄0 mixing is proportional to the deviation of | q/p | from one; so
let us calculate this ratio taking into account that Γ12 is real, while M12 is
mostly real:

q

p
= 1− iImM12

M12 − i
2Γ12

= 1 +
2iImM12

mL −mS + i
2ΓS

.

In this way for quantity ε̃ we obtain:

ε̃ = − iImM12

∆mLS + i
2ΓS

.

Branching of CP-violating KL → 2π decay equals:

Br(KL → 2π0) +Br(KL → π+π−) =
Γ(KL → 2π)

ΓKL
=

ΓKL→2π

ΓKS→2π

Γ(KS)

Γ(KL)
=

=
| η00 |2 Γ(KS → 2π0)+ | η+− |2 Γ(KS → π+π−)

Γ(KS → 2π0) + Γ(KS → π+π−)

Γ(KS)

Γ(KL)
≈

≈| η00 |2
Γ(KS)

Γ(KL)
≈| ε̃ |2 Γ(KS)

Γ(KL)
≈| ε̃ |2 5.12(2) · 10−8 sec

0.895(0.3) · 10−10 sec
≈

≈ 572 | ε̃ |2= 2.83(1) · 10−3 ,
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where the last number is the sum of KL → π+π− and KL → π0π0 branching
ratios. In this way the experimental value of | ε̃ | is determined, and for a
theoretical result we should have:

| ε̃ |= | ImM12 |√
2∆mLS

= 2.22 · 10−3.

As we have already demonstrated (tt) box gives the main contribution to
ImM12. In 1980 it was calculated for the first time explicitly not supposing that
mt � mW :

ImM12 = −G
2
FBKf

2
KmK

12π2
m2
tη2Im(V 2

tsV
∗2
td )× I(ξ) ,

I(ξ) =

{
ξ2 − 11ξ + 4

4(ξ − 1)2
− 3ξ2 ln ξ

2(1− ξ)3

}
, ξ =

(
mt

mW

)2

,

where factor η2 takes into account the gluon exchanges in the box diagram with
(tt) quarks and in the leading logarithmic approximation it equals ηLO2 = 0.6.
This factor is not changed substantially by subleading logs: ηNLO2 = 0.57(1).
Let us present the numerical values for the expression in figure brackets for
several values of the top quark mass:

{ } =
1 , mt = 0 , ξ = 0

0.55 , ξ = 4.7 , which corresponds to mt = 175 GeV
0.25 , mt = ξ =∞
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It is clearly seen that the top contribution to the box diagram is not decoupled
(it does not vanish) in the limit mt →∞. One can easily get where this
enhanced at mt →∞ behaviour originates by estimating the box diagram in
’t Hooft-Feynman gauge. In the limit mt � mW the diagram with two charged
higgs exchanges dominates, since each vertex of higgs boson emission is
proportional to mt.

s t d

d t s

H+ H−K0 K̄0

For the factor which multiplies the four-quark operator from this diagram we get:

∼ (
mt

v
)4

∫
d4p

(p2 −M2
W )2

[
p̂

p2 −m2
t

]2

∼ (
mt

v
)4 1

m2
t

= G2
Fm

2
t ,

where v is the Higgs boson expectation value. No decoupling!
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Substituting the numbers we obtain:

η(1− ρ) = 0.47(5) ,

where 10% uncertainty in the value of BK = 0.8± 0.1 dominates in the error.
Taking into account (ct) and (cc) boxes we get the following equation:

η(1.4− ρ) = 0.47(5) −

hyperbola on (ρ, η) plane.

Why is εK so small? We have the following estimate for εK :

εK ∼
m2
tλ

10η(1− ρ)

m2
cλ

2
.

It means that εK is small not because CKM phase is small, but because 2× 2
part of CKM matrix which describes the mixing of the first two generations is
almost unitary and the third generation almost decouples. We are lucky that the
top quark is so heavy; for mt ∼ 10 GeV CPV would not have been discovered in
1964.
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Direct CPV in K decays, ε′ 6= 0 (| ĀA |6= 1)

Let us consider the neutral kaon decays into two pions. It is convenient to deal
with the amplitudes of the decays into the states with a definite isospin:

A(K0 → π+π−) =
a2√

3
eiξ2eiδ2 +

a0√
3

√
2eiξ0eiδ0 ,

A(K̄0 → π+π−) =
a2√

3
e−iξ2eiδ2 +

a0√
3

√
2e−iξ0eiδ0 ,

A(K0 → π0π0) =

√
2

3
a2e

iξ2eiδ2 − a0√
3
eiξ0eiδ0 ,

A(K̄0 → π0π0) =

√
2

3
a2e
−iξ2eiδ2 − a0√

3
e−iξ0eiδ0 ,

where “2” and “0” are the values of (ππ) isospin, ξ2,0 are the weak phases which
originate from CKM matrix and δ2,0 are the strong phases of ππ-rescattering. If
the only quark diagram responsible for K → 2π decays were the charged current
tree diagram which describes s→ uūd transition through W -boson exchange,
then the weak phases would be zero and it would be no CPV in the decay
amplitudes (the so-called direct CPV). All CPV would originate from K0 − K̄0

mixing. Such indirect CPV was called superweak (L.Wolfenstein, 1964).
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However, in Standard Model the CKM phase penetrates into the amplitudes of
K → 2π decays through the so-called “penguin” diagram shown below and ξ0
and ξ2 are nonzero leading to direct CPV as well.

s

W

d

q

q

g, γ, Z

u,c,t

From the equations shown in the previous slide we get:

Γ(K0 → π+π−)− Γ(K̄0 → π+π−) = −4

√
2

3
a0a2 sin(ξ2 − ξ0) sin(δ2 − δ0) ,

so for direct CPV to occur through the difference of K0 and K̄0 widths at least
two decay amplitudes with different CKM and strong phases should exist.
In the decays of KL and KS mesons the violation of CP occurs due to that in
mixing (indirect CPV) and in decay amplitudes of K0 and K̄0 (direct CPV).
The first effect is taken into account in the expression for KL and KS

eigenvectors through K0 and K̄0:
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KS =
K0 + K̄0

√
2

+ ε̃
K0 − K̄0

√
2

,

KL =
K0 − K̄0

√
2

+ ε̃
K0 + K̄0

√
2

,

where we neglect ∼ ε̃2 terms. For the amplitudes of KL and KS decays into
π+π− we obtain:

A(KL → π+π−) =
1√
2

[
a2√

3
eiδ22i sin ξ2 +

a0√
3

√
2eiδ02i sin ξ0

]
+

+
ε̃√
2

[
a2√

3
eiδ22 cos ξ2 +

a0√
3

√
2eiδ02 cos ξ0

]
,

A(KS → π+π−) =
1√
2

[
a2√

3
eiδ22 cos ξ2 +

a0√
3

√
2eiδ02 cos ξ0

]
,

where in the last equation we omit the terms which are proportional to the
product of two small factors, ε̃ and sin ξ0,2. For the ratio of these amplitudes we
get:

η+− ≡
A(KL → π+π−)

A(KS → π+π−)
= ε̃+ i

sin ξ0
cos ξ0

+
iei(δ2−δ0)

√
2

a2 cos ξ2
a0 cos ξ0

[
sin ξ2
cos ξ2

− sin ξ0
cos ξ0

]
,

where we neglect the terms of the order of (a2/a0)2 sin ξ0,2 because from the
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∆I = 1/2 rule in K-meson decays it is known that a2/a0 ≈ 1/22.
The analogous treatment of KL,S → π0π0 decay amplitudes leads to:

η00 ≡
A(KL → π0π0)

A(KS → π0π0)
= ε̃+ i

sin ξ0
cos ξ0

− iei(δ2−δ0)
√

2
a2 cos ξ2
a0 cos ξ0

[
sin ξ2
cos ξ2

− sin ξ0
cos ξ0

]
.

The difference of η± and η00 is proportional to ε′:

ε′ ≡ i√
2
ei(δ2−δ0) a2 cos ξ2

a0 cos ξ0

[
sin ξ2
cos ξ2

− sin ξ0
cos ξ0

]
=

=
i√
2
ei(δ2−δ0)ReA2

ReA0

[
ImA2

ReA2
− ImA0

ReA0

]
=

i√
2
ei(δ2−δ0) 1

ReA0

[
ImA2 −

1

22
ImA0

]
,

where A2,0 ≡ eiξ2,0a2,0.
Introducing quantity ε according to the standard definition

ε = ε̃+ i
ImA0

ReA0
,

we obtain:
η+− = ε+ ε′ , η00 = ε− 2ε′ .

The double ratio η+−/η00 was measured in the experiment and its difference
from 1 demonstrates direct CPV in kaon decays:
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(
ε′

ε

)exp

= (1.67± 0.23) · 10−3 .

The smallness of this ratio is due to (1) the smallness of the phases produced by
the penguin diagrams and (2) smallness of the ratio a2/a0 ≈ ReA2/ReA0.
Let us estimate the value of ε′. The penguin diagram with the gluon exchange
generates K → 2π transition with ∆I = 1/2; those with γ- and Z-exchanges
contribute to ∆I = 3/2 transitions as well. The contribution of electroweak
penguins being smaller by the ratio of squares of coupling constants is enhanced
by the factor ReA0/ReA2 = 22, see the last part in equation for ε′. As a result
the partial compensation of QCD and electroweak penguins occurs. In order to
obtain an order of magnitude estimate let us take into account only QCD
penguins. We obtain the following estimate for the sum of the loops with t- and
c-quarks:

| ε′ |≈ 1

22
√

2

sin ξ0
cos ξ0

=
1

22
√

2

αs(mc)

12π
ln(

mt

mc
)2A2λ4η ≈

≈ 2 ∗ 10−5αs(mc)

12π
ln(

mt

mc
)2 .

Taking into account that | ε |≈ 2.4 · 10−3 we see that the smallness of the ratio of
ε′/ε can be readily understood.
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In order to make an accurate calculation of ε′/ε one should know the matrix
elements of the quark operators between K-meson and two π-mesons.
Unfortunately at low energies our knowledge of QCD is not enough for such a
calculation. That is why a horizontal strip which should correspond to equation
for ε′/ε has too large width and usually is not shown. Nevertheless we have
discussed direct CPV since it will be important for B and D-mesons.
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Direct CP asymmetries in D0(D̄0)→ π+π−, K+K−

∆ACP = ACP (K+K−)−ACP (π+π−) = (−15.6± 2.9)× 10−4,

5.3 standard deviations away from zero (LHCb, 2019).

ACP (f) =
Γ(D0 → f)− Γ(D̄0 → f)

Γ(D0 → f) + Γ(D̄0 → f)

Are π+π− from D0 or from D̄0? D∗+ → D0π+, D∗− → D̄0π− tagging.

u u

c d

d

uW

D̄0

u u

c
b b

u

d

dg

D̄0
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Direct CP asymmetries in D0 decays

A(D̄) = eiδTVcdV
∗
ud − PVcb|Vub|eiγ ,

A(D) = eiδTV ∗cdVud − PV ∗cb|Vub|e−iγ ,

ACP (π+π−) =
4TPVcdV

∗
ud|Vub|V ∗cb sin(δ) sin(γ)

2T 2|VcdVud|2
.

In the limit of U -spin (d↔ s) symmetry ACP (K+K−) = −ACP (π+π−), and
sign “-” comes from Vcd = −Vus. Thus we get:

|∆ACP | = 4|P/TA2λ4
√
ρ2 + η2 sin(δ) sin(γ)| ≈ |25 sin(δ)P/T | × 10−4,

and to reproduce an experimental result strong interactions phase δ should be
big and penguin amplitude should be of the order of the tree one.
The reason for the small value of CPV asymmetry in charm is the same as in K-
mesons: 2× 2 part of CKM matrix which describes mixing of the first and second
generations is almost unitary. The absence of ∆I = 1/2 amplitude enhancement
in case of D decays makes direct CPV asymmetry larger than in kaon decays.
When the third generation is involved CPV can be big.
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25 % direct CP asymmetry in Bs decay

While direct CPV in kaons is very small it is sometimes huge in B-mesons:
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Direct CP asymmetries in Bs → K−π+ and
B0 → K+π−

Though we cannot compute them, we can relate them in the U spin invariance
approximation (d↔ s).

s s

b u

u

dW

Bs
s s

b

c c

d

u

ug

Bs

A(Bs −→ K−π+) = TsV
∗
ubVud + Pse

iδV ∗cbVcd,

A(B̄s −→ K+π−) = TsVubV
∗
ud + Pse

iδVcbV
∗
cd,

where δ is strong phase; CKM phase is contained in Vub = −e−iγ |Vub|.
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ACP (Bs −→ K−π+) =
|A(B̄s)|2 − |A(Bs)|2
|A(B̄s)|2 + |A(Bs)|2

=

=
4TsPsV

∗
udVcbV

∗
cd|Vub| sin(δ) sin(γ)

2T 2
s |VubVud|2 + 2P 2

s |VcbVcd|2 − 4PsTsV ∗udVcbV
∗
cd|Vub| cos(δ) cos(γ)

,

and CKM factors multiplying terms in the nominator and denominator are of
the order of λ6 - no CKM suppression of ACP (Bs).
Since asymmetry is big Ps/Ts is not that small.
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d d

b u

u

sW

B0

d d

b

c c
s

u

ug

B0

Problem 5

Derive an expression for ACP (B0 −→ K+π−) and get the following equality:
ACP (B0) · ΓB0→Kπ = −ACP (Bs) · ΓBs→Kπ.

Substituting experimentally measured numbers from RPP (PDG) for
asymmetries ACP (B0) = −0.082(6), ACP (Bs) = 0.26(4) and branching ratios
Br(B0 → Kπ = 20 · 10−6), Br(Bs → Kπ = 5.7 · 10−6) check this equality.

Smallness of branching ratios is the main problem in studying CPV in B-mesons.
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CPV in neutrino oscillations
In order to have CPV we need not only CP violating phase δ but CP conserving
phase as well (iΓ12 in case of mixing, δ2 − δ0 in case of direct CPV).

Problem 6
In case of leptons the flavor mixing is described by the PMNS matrix: νe

νµ
ντ

 =

 Ve1 Ve2 Ve3
Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3

 ν1

ν2

ν3

 .

CPV means that the probability of νµ −→ νe oscillation Peµ does not coincide
with the probability of ν̄µ −→ ν̄e oscillation Pēµ̄.
Check that

Peµ − Pēµ̄ = 4Im(V ∗µ1Ve1Vµ2V
∗
e2) ∗ [sin(

∆m2
12

2E
x) + sin(

∆m2
31

2E
x) + sin(

∆m2
23

2E
x)].

Just like in kaons CPV is proportional to Jarlskog invariant.
When two neutrinos have equal masses there is no CPV.
Where is the CP conserving phase in the case of CPV in neutrino oscillations?
By the way, the driving force for Bruno Pontecorvo to consider neutrino oscilla-
tions was the observed oscillations of neutral kaons.
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CPV - absolute notion of a particle

δL =
Γ(KL → π−e+ν)− Γ(KL → π+e−ν̄)

...+ ...
= 2Reε̃ ≈ 3.3 ∗ 10−3.

Pions of low energies mostly produce K0 on the Earth, while K̄0 on the
“antiEarth”. However, in both cases KL decay (a little bit) more often into
positrons than into electrons.
“ The atoms on the Earth contain antipositrons (electrons) - and what about
your planet?”

Problem 7

Violation of leptonic (muon and electron) numbers due to neutrino mixing.
Estimate the branching ratio of the µ −→ eγ decay, which occurs in the
Standard Model due to the analog of the penguin diagram from slide 45 without
splitting of the photon.
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Parameters of CKM matrix

Four quantities are needed to specify CKM matrix: s12, s13, s23 and δ, or
λ,A, ρ, η. Knowing more we are checking the Standard Model and looking for
New Physics.
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Constraints on the ρ̄, η̄ plane

The shaded areas have 95% CL.

ρ̄ ≡ ρ(1− λ2/2)), η̄ ≡ η(1− λ2/2))
M. I. Vysotsky, ITEP Flavor physics and CPV 59/96



Vcd, Vcb, Vub

The precise value of Vus follows from the extrapolation of the formfactor of
K → πeν decay f+(q2) to the point q2 = 0, where q is the lepton pair
momentum. Due to the Ademollo-Gatto theorem the corrections to the CVC
value f+(0) = 1 are of the second order of flavor SU(3) violation, and these small
terms were calculated. As a result of this (and other) analyses PDG gives the
following value: Vus ≡ λ = 0.2243(5) .
The accuracy of λ is high: the other parameters of CKM matrix are known
much worse. Vcd is measured in the processes with c-quark with an order of
magnitude worse accuracy: Vcd = 0.218(4).
The value of Vcb is determined from the inclusive and exclusive semileptonic
decays of B-mesons to charm. At the level of quarks b→ clν transition is
responsible for these decays: Vcb = (42.2± 0.8)10−3.
The value of |Vub| is extracted from the semileptonic B-mesons decays without
the charmed particles in the final state which originated from b→ ulν transition:
Vub = (3.94± 0.36)10−3.
The apex of the unitarity triangle should belong to a circle on (ρ, η) plane with
the center at the point (0, 0). The area between such two circles (deep green
color) corresponds to the domain allowed at 2σ.
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εK ,∆mB0,∆mB0
s

CPV in kaon mixing determines the hyperbola shown by light green color in the
Figure, see slide 43 for the corresponding equation. In Standard Model Bd − B̄d
transition occurs through the box diagram shown below:

b u, c, t d

d u, c, t b

W WB0 B̄0

Unlike the case of K0 − K̄0 transition the power of λ is the same for u, c and t
quarks inside a loop, so the diagram with t-quarks dominates.
Calculating it in complete analogy with K-meson case we get:

M12 = −G
2
FBBdf

2
Bd

12π2
mBm

2
tηBV

2
tbV
∗2
td I(ξ) ,

where I(ξ) is the same function as that for K-mesons, ηB = 0.55± 0.01 (NLO).
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Γ12 is determined by the absorptive part of the same diagram (so, 4 diagrams
altogether: uu, uc, cu, cc quarks in the inner lines). The result of calculation is:

Γ12 =
G2
FBBdf

2
Bd
m3
B

8π
[VcbV

∗
cd(1 +O(

m2
c

m2
b

)) + VubV
∗
ud]

2 ,

where the term O(m2
c/m

2
b) accounts for nonzero c-quark mass.

Using the unitarity of CKM matrix we get:

Γ12 =
G2
FBBdf

2
Bd
m3
B

8π
[−VtbV ∗td +O(

m2
c

m2
b

)VcbV
∗
cd]

2 ,

and the main term in Γ12 has the same phase as the main term in M12. That is
why CPV in mixing of B-mesons is suppressed by an extra factor (mc/mb)

2 and
is small. Postponing the discussion of CPV in B − B̄ mixing for the difference of
masses of the two eigenstates from

M+ −M− −
i

2
(Γ+ − Γ−) = 2

√
(M12 −

i

2
Γ12)(M∗12 −

i

2
Γ∗12)

we obtain:

∆mB0 = −G
2
FBBdf

2
B

6π2
mBm

2
tηB | V 2

tbV
∗2
td | I(ξ) ,
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∆mB0 and semileptonic B0(B̄0) decays

and ∆mB0 is negative as well as in the kaon system: a heavier state has smaller
width.
The B-meson semileptonic decays are induced by a semileptonic b-quark decay,
b→ l−νc (l−νu). In this way in the decays of B̄0 mesons l− are produced, while
in the decays of B0 mesons l+ are produced. However, B0 and B̄0 are not the
mass eigenstates and being produced at t = 0 they start to oscillate according to
the following formulas:

B0(t) =
e−iλ+t + e−iλ−t

2
B0 +

q

p

e−iλ+t − e−iλ−t
2

B̄0 ,

B̄0(t) =
e−iλ+t + e−iλ−t

2
B̄0 +

p

q

e−iλ+t − e−iλ−t
2

B0 .

That is why in their semileptonic decays the “wrong sign leptons” are sometimes
produced, l− in the decays of the particles born as B0 and l+ in the decays of
the particles born as B̄0. The number of these “wrong sign” events depends on
the ratio of the oscillation frequency ∆m and B-meson lifetime Γ (unlike the
case of K-mesons for B-mesons ∆Γ� Γ). For ∆m� Γ a large number of
oscillations occurs, and the number of “the wrong sign leptons” equals that of a
normal sign. If ∆m� Γ, then B-mesons decay before they start to oscillate.
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The pioneering detection of “the wrong sign events” by ARGUS collaboration in
1987 demonstrates that ∆m is of the order of Γ, which in the framework of
Standard Model could be understood only if the top quark is unusually heavy,
mt ≥ 100 GeV. Fast B0 − B̄0 oscillations made possible the construction of
asymmetric B-factories where CPV in B0 decays was observed. (Let us mention
that UA1 collaboration saw the events which were interpreted as a possible
manifestation of B0

s − B̄0
s oscillations .)

Integrating the probabilities of B0 decays in l+ and l− over t, we obtain for “the
wrong sign lepton” probability:

WB0→B̄0 ≡ NB0→l−X
NB0→l−X +NB0→l+X

=

=
| qp |2 (∆m

Γ )2

2 + (∆m
Γ )2+ | qp |2 (∆m

Γ )2
,

where we neglect ∆Γ, the difference of B+- and B−-mesons lifetimes. Precisely
according to our discussion for ∆m/Γ� 1 we have W = 1/2, while for
∆m/Γ� 1 we have W = 1/2(∆m/Γ)2 (with high accuracy | p/q |= 1).

For B̄0 decays we get the same formula with the interchange of q and p.
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s mixing.
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b→ sg → sss̄.

Bs(B̄s)→ J/Ψφ.
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In ARGUS experiment B-mesons were produced in Υ(4S) decays: Υ(4S)→ BB̄.
For Υ resonances JPC = 1−−, that is why (pseudo)scalar B-mesons are
produced in P -wave. It means that BB̄ wave function is antisymmetric at the
interchange of B and B̄. This fact forbids the configurations in which due to
B − B̄ oscillations both mesons become B, or both become B̄. However, after
one of the B-meson decays the flavor of the remaining one is tagged, and it
oscillates according to the equation from slide 63.
If the first decay is semileptonic with l+ emission indicating that a decaying
particle was B0, then the second particle was initially B̄0. Thus taking | p/q |= 1
we get for the relative number of the same sign dileptons born in semileptonic
decays of B-mesons, produced in Υ(4S)→ BB̄ decays:

Nl+l+ +Nl−l−

Nl+l−
=

W

1−W =
x2

2 + x2
, x ≡ ∆m

Γ
.

Let us note that if B0 and B̄0 are produced incoherently (say, in hadron
collisions) a different formula should be used:

Nl+l+ +Nl−l−

Nl+l−
=

2W − 2W 2

1− 2W + 2W 2
=

x2(2 + x2)

2 + 2x2 + x4
.

In the absence of oscillations (x = 0) both equations give zero; for high
frequency oscillations (x� 1) both of them give one.
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From the time integrated data of ARGUS and CLEO Wd = 0.182± 0.015
follows. From the time-dependent analysis of B-decays at the high energy
colliders (LEP II, Tevatron, SLC, LHC) and the time-dependent analysis at the
asymmetric B-factories Belle and BaBar the following result was obtained :

xd = 0.770(4) .

By using the life time of Bd-mesons: ΓBd = [1.52(1) ·10−12 sec]−1 ≡ [1.52(1)ps]−1

we get for the mass difference of Bd mesons:

∆md = 0.506(2)ps−1 or, equivalently,Wd = 0.1874± 0.0018.

This ∆md value can be used with the theoretical result from slide 62 to extract
the value of |Vtd|. The main uncertainty is in a hadronic matrix element
fBd
√
BBd = 216± 15 MeV obtained from the lattice QCD calculations.
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∆mB0
s

Theoretical uncertainty diminishes in the ratio

∆ms

∆md
=
mBs

mBd

ξ2 |Vts|2
|Vtd|2

,

where ξ = (fBs
√
BBs)/(fBd

√
BBd) = 1.24± 0.05.

Since the lifetimes of Bd - and Bs -mesons are almost equal, we get:

xs ≈ xd
|Vts|2
|Vtd|2

which means xs � 1 and very fast oscillations. That is why WBs equals 1/2 with
very high accuracy and one cannot extract xBs from the time integrated
measurements.
B0
s − B̄0

s oscillations were first observed at Tevatron. The average of all
published measurements

∆mB0
s

= 17.757± 0.020(stat)± 0.007(syst) (ps
−1

)

is dominated by LHCb:
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Thus we get
|Vtd/Vts| = 0.210± 0.001(exp)± 0.008(theor),

which corresponds to yellow (only ∆md) and brown (∆md and ∆ms) circles in
slide 59.
What remains is the values of the angles of the unitarity triangle, which are
determined by CP-violation measurements in B-meson decays. Soon we will go
there, but before:
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∆Γ/Γ

For the difference of the width of BdL and BdH we obtain

∆ΓBd = 2Γ12 ≈
G2
FBBdf

2
Bm

3
B

4π
| Vtd |2 ,

which is very small:
∆ΓBd
ΓBd

< 1% ,

as opposite to K-meson case, where KS and KL lifetimes differ strongly.
In the Bs-meson system a larger time difference is expected; substituting Vts
instead of Vtd we obtain:

∆ΓBs
ΓBs

∼ 10% .

Bs, experiment:
ΓB0

sL
= (1.414(10)ps)−1

ΓB0
sH

= (1.624(14)ps)−1

L - light, H - heavy.
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CPV in B0 − B̄0 mixing

For a long time CPV in K-mesons was observed only in K0 − K̄0 mixing. That
is why it seems reasonable to start studying CPV in B-mesons from their mixing:∣∣∣∣qp

∣∣∣∣ =

∣∣∣∣∣
√

1 +
i

2

(
Γ12

M12
− Γ∗12

M∗12

)∣∣∣∣∣ =

∣∣∣∣1 +
i

4

(
Γ12

M12
− Γ∗12

M∗12

)∣∣∣∣ =

= 1− 1

2
Im

(
Γ12

M12

)
≈ 1− m2

c

m2
t

Im
VcbV

∗
cd

VtbV ∗td
≈ 1−O(10−4) .

We see that CPV in Bd − B̄d mixing is very small because t-quark is very heavy
and is even smaller in Bs − B̄s mixing.
The experimental observation of Bd − B̄d mixing comes from the detection of the
same sign leptons produced in the semileptonic decays of Bd − B̄d pair from
Υ(4S) decay. Due to CPV in the mixing the number of l−l− events will differ
from that of l+l+ and this difference is proportional to | qp | − 1 ∼ 10−4:

ABSL =
N(B̄0 → l+X)−N(B0 → l−X)

N(B̄0 → l+X) +N(B0 → l−X)
= O(10−4).
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The experimental number is:

ABdSL = 0.0021± 0.0017,

or
|q/p|Bd = 1.0010± 0.0008.

This result shows no evidence of CPV and does not constrain the SM.
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CPV in interference of mixing and decay (ImqĀ
pA
6= 0)

As soon as it became clear that CPV in B − B̄ mixing is small theoreticians
started to look for another way to find CPV in B decays (PNPI: A.A.Anselm,
Ya.I.Azimov, V.A.Khoze, N.G.Uraltsev). The evident alternative is the direct
CPV. It is very small in K-mesons because: a) the third generation almost
decouples in K decays; b) due to ∆I = 1/2 rule. Since in B-meson decays all
three quark generations are involved and there are many different final states,
large direct CPV do occur. An evident drawback of this strategy: a branching
ratio of B-meson decays into any particular exclusive hadronic mode is very
small (just because there are many modes available), so a large number of
B-meson decays are needed. The specially constructed asymmetric
e+e−-factories Belle (1999-2010) and BaBar (1999-2008) working at the
invariant mass of Υ(4S) discovered CPV in B0(B̄0) decays in 2001.

The time evolution of the states produced at t = 0 as B0 or B̄0 is described by
eqs. given in slide 63. It is convenient to present these formulae in a little bit
different form:
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| B0(t) >= e−i
M++M−

2 t−Γt
2 [cos(

∆mt

2
) | B0 > +i

q

p
sin(

∆mt

2
) | B̄0 >]

| B̄0(t) >= e−i
M++M−

2 t−Γt
2 [+i

p

q
sin(

∆mt

2
) | B0 > + cos(

∆mt

2
) | B̄0 >] ,

where ∆m ≡M− −M+ > 0, and we take Γ+ = Γ− = Γ neglecting their small
difference (which should be accounted for in case of Bs).
Let us consider a decay in some final state f . Introducing the decay amplitudes
according to the following definitions:

Af = A(B0 → f) , Āf = A(B̄0 → f) ,

Af̄ = A(B0 → f̄) , Āf̄ = A(B̄0 → f̄) ,

for the decay probabilities as functions of time we obtain:
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PB0→f (t) = e−Γt | Af |2 [cos2(
∆mt

2
)+

∣∣∣∣qĀfpAf

∣∣∣∣2 sin2(
∆mt

2
)−Im

(
qĀf
pAf

)
sin(∆mt)],

PB̄0→f̄ (t) = e−Γt | Āf̄ |2 [cos2(
∆mt

2
)+

∣∣∣∣∣pAf̄qĀf̄

∣∣∣∣∣
2

sin2(
∆mt

2
)−Im

(
pAf̄
qĀf̄

)
sin(∆mt)].

The difference of these two probabilities signals different types of CPV: the
difference in the first term in brackets appears due to direct CPV; the difference
in the second term - due to CPV in mixing or due to direct CPV, and in the last
term – due to CPV in the interference of B0 − B̄0 mixing and decays.
Let f be a CP eigenstate: f̄ = ηff , where ηf = +(−) for CP even (odd) f . (Two
examples of such decays: B0 → J/ΨKS(L) and B0 → π+π− are described by the
quark diagrams shown in the next slide. The analogous diagrams describe B̄0

decays in the same final states.) The following equalities can be easily obtained:

Af̄ = ηfAf , Āf̄ = ηf Āf .
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d d

b
b

uc

c

s

u

d

a) b)

In the absence of CPV the expressions in brackets are equal and the obtained
formulas describe the exponential particle decay without oscillations. Taking
CPV into account and neglecting a small deviation of | p/q | from one, for CPV
asymmetry of the decays into CP eigenstate we obtain:

aCP (t) ≡ PB̄0→f − PB0→f

PB̄0→f + PB0→f
=
| λ |2 −1

| λ |2 +1
cos(∆mt) +

2Imλ

| λ |2 +1
sin(∆mt) ≡

≡ −Cf cos(∆mt) + Sf sin(∆mt) ,

where λ ≡ qĀf
pAf

. (Do not confuse with the parameter of CKM matrix).
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The nonzero value of Cf corresponds to direct CPV; it occurs when more than
one amplitude contribute to the decay. For extraction of CPV parameters (the
angles of the unitarity triangle) in this case the knowledge of strong rescattering
phases is necessary. The nonvanishing Sf describes CPV in the interference of
mixing and decay. It is nonzero even when there is only one decay amplitude,
and |λ| = 1. Such decays are of special interest since the extraction of CPV
parameters becomes independent of poorly known strong phases of the final
particles rescattering.
The decays of Υ(4S) resonance produced in e+e− annihilation are a powerful
source of B0B̄0 pairs. A semileptonic decay of one of the B’s tags “beauty” of
the partner at the moment of decay (since (B0B0), (B̄0B̄0) states are forbidden)
thus making it possible to study CPV. However, the time-integrated asymmetry
is zero for decays were Cf is zero. This happens since we do not know which of
the two B-mesons decays earlier, and asymmetry is proportional to:

I =
∞∫
−∞

e−Γ|t| sin(∆mt)dt = 0 . The asymmetric B-factories provide possibility

to measure the time-dependence: Υ(4S) moves in a laboratory system, and since
energy release in Υ(4S)→ BB̄ decay is very small both B and B̄ move with the
same velocity as the original Υ(4S). This makes the resolution of B decay
vertices possible unlike the case of Υ(4S) decay at rest, when non-relativistic B
and B̄ decay at almost the same point.
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B0
d(B̄

0
d)→ J/ΨKS(L), sin 2β – straight lines

The tree diagram contributing to this decay is shown two slides above. The
product of the corresponding CKM matrix elements is: V ∗cbVcs ' Aλ2. Also the
penguin diagram b→ sg with the subsequent g → cc̄ decay contributes to the
decay amplitude. Its contribution is proportional to:

P ∼ VusV ∗ubf(mu) + VcsV
∗
cbf(mc) + VtsV

∗
tbf(mt) =

= VusV
∗
ub(f(mu)− f(mt)) + VcsV

∗
cb(f(mc)− f(mt)) ,

where function f describes the contribution of quark loop and we subtracted
zero from the expression on the first line. The last term on the second line has
the same weak phase as the tree amplitude, while the first term has a CKM
factor VusV

∗
ub ∼ λ4(ρ− iη)A. Since (one-loop) penguin amplitude should be in

any case smaller than the tree one, we get that with 1% accuracy there is only
one weak amplitude governing B0

d(B̄0
d)→ J/ΨKS(L) decays. This is the reason

why this mode is called a “gold-plated mode” – the accuracy of the theoretical
prediction of the CP-asymmetry is very high, and Br (Bd → J/ΨK0) ≈ 10−3 is
large enough to detect CPV.
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Substituting |λ| = 1 in the expression for aCP (t) we obtain:

aCP (t) = Imλ sin(∆m∆t) ,

where ∆t is the time difference between the semileptonic decay of one of
B-mesons produced in Υ(4S) decay and that of the second one to J/ΨKS(L).
Using the following equation

Āf = ηf Āf̄ ,

where ηf is CP parity of the final state, we obtain:

λ =

(
q

p

)
Bd

AB̄0→J/ΨKS(L)

AB0→J/ΨKS(L)

=

(
q

p

)
Bd

ηf
A
B̄0→J/ΨKS(L)

AB0→J/ΨKS(L)

.

The amplitude in the nominator contains K̄0 production. To project it on K̄S(L)

we should use:

K0 =
KS −KL

(q)K
=
K̄S + K̄L

(q)K
,

getting (q)K in the denominator. The amplitude in the denominator contains
K0 production, and using:

K0 =
KS +KL

(p)K

we obtain factor (p)K in the nominator. Collecting all the factors together and
substituting CKM matrix elements for Āf̄/Af ratio we get:
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λ = ηS(L)

(
q

p

)
Bd

VcbV
∗
cs

V ∗cbVcs

(
p

q

)
K

.

Since in B decays J/Ψ and KS(L) are produced in P -wave, ηS(L) = −(+) (CP of

J/Ψ is +, that of KS is + as well, and (−1)l = −1 comes from P -wave; CP of
KL is −).
Substituting the expressions for (q/p)Bd and (p/q)K and taking into account
ηS(L) we obtain:

λ(J/ΨKS(L)) = ηS(L)
VtdV

∗
tb

V ∗tdVtb

VcbV
∗
cs

V ∗cbVcs

V ∗cdVcs
VcdV ∗cs

,

which is invariant under the phase rotation of any quark field. From the
unitarity triangle figure we have

arg(V ∗tbVtd) = π − β ,

and we finally obtain:

aCP (t)

∣∣∣∣J/ΨKS(L)

= −ηS(L) sin(2β) sin(∆m∆t) ,

which is a simple prediction of the Standard Model. In this way the
measurement of this asymmetry at B-factories provides the value of angle β of
the unitarity triangle.
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The Belle, BaBar and LHCb average is:

sin 2β = 0.691± 0.017.

which corresponds to
β = (21.9± 0.7)0.

As a final state not only J/ΨKS(L) were selected, but neutral kaons with the
other charmonium states as well.
Let us note that the decay amplitudes and K0 − K̄0 mixing do not contain a
complex phase, that is why the only source of it in B0 → charmonium KS(L)

decays is B0 − B̄0 mixing:(
q

p

)
Bd

=

√
M∗12

M12
=
V ∗tbVtd
VtbV ∗td

,

thus the phase comes from Vtd, that is why the final expression contains angle 2β
– the phase of Vtd/V

∗
td.
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What is the probability of
Υ(4S)→ B0

dB̄
0
d → J/ΨKS J/ΨKS decay?

m ≡ (mH +mL)/2 , ∆m ≡ mH −mL , ΓH = ΓL = Γ .
JPC(Υ) = 1−−, B-mesons are produced in P-wave, so their wave function is
C-odd: Ψ(t1, t2) = B0(t1)B̄0(t2)−B0(t2)B̄0(t1)

〈J/ΨKS J/ΨKS |Ψ(t1, t2)〉 = e−imt1−
Γt1
2

[
A cos

∆mt1
2

+

+ i
q

p
sin

(
∆mt1

2

)
Ā

]
e−imt2−

Γt2
2

[
cos

(
∆mt2

2

)
Ā+

+ i
p

q
sin

(
∆mt2

2

)
A

]
− (t1 ↔ t2) =

= e−im(t1+t2)−Γ
t1+t2

2

[
(i
p

q
A2 − i q

p
Ā2) cos

(
∆mt1

2

)
sin

(
∆mt2

2

)
+

+ (i
q

p
Ā2 − ip

q
A2) sin

(
∆mt1

2

)
cos

(
∆mt2

2

)]
=
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= −e−2imt−Γt(i
p

q
A2)[1− λ2] sin

(
∆m∆t

2

)
,

t ≡ t1 + t2
2

,∆t ≡ t1 − t2,
q

p
= e−2iβ

P (J/ΨKS , J/ΨKS) = e−2Γt|A|4[1− e4iβ ][1− e−4iβ ] sin2

(
∆m∆t

2

)
∼

∼ e−2Γt sin2(2β) sin2 (∆m∆t)

2
.

∞∫
0

dt1

∞∫
0

dt2 =

∞∫
−∞

d(∆t)

∞∫
|∆t|/2

dt

N(∆t) ∼ sin2 2β[1− cos(∆m∆t)]e−Γ|∆t|, which is zero when ∆t = 0 – Bose
statistics, when ∆m = 0 – no oscillations, and for β = 0 – CPV (CP Υ = +,
CP (J/ΨKS J/ΨKS) = −).

N(J/ΨKS J/ΨKS) ∼ sin2 2β

(
∆m2

∆m2 + Γ2

)
After one of B decays to J/ΨKS the second one starts to oscillate and may
decay to J/ΨKS as well.

Initial state is CP even, final state is CP odd, so no decay without CPV.M. I. Vysotsky, ITEP Flavor physics and CPV 85/96



Υ(4S)→ B0
dB̄

0
d, φ→ K0K̄0, C-even and ”classical“

initial states

If you take different initial and final states then you may solve many problems
the same way as we have just shown.

C-even:

Ψ(t1, t2) = B0(t1)B̄0(t2) +B0(t2)B̄0(t1)

”classical“(produced in hadron collisions, LHC):

Ψ(t1, t2) = B0(t1)B̄0(t2)
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CPV in b→ sg → sss̄: penguin domination

Bd → φK0,K+K−K0, η′K0.

d d

b

u, t, c
s

s

sg

The diagram with an intermediate u-quark is proportional to λ4, while those
with intermediate c- and t-quarks are proportional to λ2. In this way the main
part of the decay amplitude is free of CKM phase, just like in case of
Bd → J/ΨK decays. A nonzero phase which leads to time-dependent CP
asymmetry comes from Bd − B̄d transition:

aCP (t) = −ηf sin(2β) sin(∆m∆t) ,

analogously to Bd → J/ΨK decays.
The main interest in these decays is to look for phases of NP .
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Bs(B̄s)→ J/Ψφ, φs

The analog of B0(B̄0)→ J/ΨK decay: the tree amplitude dominates and CP
asymmetry could appear from Bs ↔ B̄s transition. Vts unlike Vtd is almost real,
so asymmetry should be very small - a good place to look for New Physics. The
angular analysis of J/Ψ→ µ+µ− and φ→ KK decays is necessary to select the
final states with definite CP parity.
Taking the difference of the width of two eigenstates into account
(∆Γ = ΓL − ΓH) we get:
PBs→f (t) = 1

2e
−Γt|Af |2(1 + |λf |2)[cosh(∆Γt/2)−Df sinh(∆Γt/2)+

+Cf cos(∆mt)− Sf sin(∆mt)],

PB̄s→f (t) = 1
2e
−Γt|pqAf |2(1 + |λf |2)[cosh(∆Γt/2)−Df sinh(∆Γt/2)−

−Cf cos(∆mt) + Sf sin(∆mt)],

Df =
2Reλf

1+|λf |2 , Cf =
1−|λf |2
1+|λf |2 , Sf =

2Imλf
1+|λf |2 .

ACP (t)(|p/q| = 1) =
−Cf cos(∆mt) + Sf sin(∆mt)

cosh(∆Γt/2)−Df sinh(∆Γt/2)

Standard Model prediction is φSMs = −arg
VtsV

∗
tb

V ∗tsVtb
= −2λ2η =-0.036 rad,

while φexps = −0.040± 0.025 rad. No New Physics yet...
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α : B −→ ππ, ρρ, πρ

Since α is the phase between V ∗tbVtd and V ∗ubVud, the time dependent CP
asymmetries in b −→ uūd decay dominated modes directly measure sin(2α).
b −→ d penguin amplitudes have different CKM phases than the tree amplitude
and are of the same order in λ. Thus penguin contribution can be sizeable,
making determination of α complicated.
Fortunately Br(B → ρ0ρ0)� Br(B → ρ+ρ−), Br(B+ → ρ+ρ0), which proves
that the contribution of the penguins in B −→ ρρ decays is small.
Even more, the longitudinal polarization fractions in B → ρ+ρ−, B+ → ρ+ρ0

decays appeared to be close to unity, which means that the final states are CP
even and the following relations should be valid:

Sρ+ρ− = sin(2α), Cρ+ρ− = 0.

The experimental numbers are:

Sρ+ρ− = −0.05± 0.17, Cρ+ρ− = −0.06± 0.13.

So, C is compatible with zero, while from S we get

α = (91± 5)0.

Finally from the combination of the B −→ ππ, ρρ, πρ modes the following result
is obtained: α = (85± 4)0.
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Problem 8
In the decays considered in the above slide the quarks of the first and third
generations participate, so only 2 generations are involved. As it was stated and
demonstrated, at least 3 generations are needed for CPV. So, how does it
happen that in B −→ ρρ decays CP is violated?
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γ

The next task is to measure angle γ, or the phase of Vub. In Bd decays angle β
enters the game through Bd − B̄d mixing. To avoid it in order to single out angle
γ we should consider Bs decays, or the decays of charged B-mesons. The
interference of B− −→ D0K−(b −→ cūs) and B− −→ D̄0K−(b −→ uc̄s)
transitions in the final states accessible in both D0 and D̄0 decays (such as
K0
Sπ

+π−) provides the best accuracy in γ determination. Combining all the
existing methods, the following result was obtained:

γ = (74± 5)0.

Here LHCb is significantly more precise than old Belle and BaBar results and
undergoing continuous improvement.
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CKM fit

UTfit and CKMfitter collaborations are making fits of available data by four
Wolfenstein parameters. Here are UTfit results:

λ = 0.225(1),

A = 0.83(1),

η = 0.36(1),

ρ = 0.15(1).

For the angles of UT the result of fit is:

α = (90± 2)0, β = (24± 1)0, γ = (66± 2)0.

So α+ β + γ = 1800 - no traces of New Physics yet.

The quality of fit is high and CKMfitter results are approximately the same.
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Perspectives: Belle II, LHC, K −→ πνν

The planned Belle II accuracy in angle γ is 10:

M. I. Vysotsky, ITEP Flavor physics and CPV 94/96



M. I. Vysotsky, ITEP Flavor physics and CPV 95/96



K −→ πνν
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Backup slides
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CPV in K0(K̄0) −→ π+π−, CPLEAR

We cannot study CPV in B-mesons the same way as we did in kaons since
lifetimes of BH and BL almost coincide. Thus we cannot have a beam of BH .

However, CPV in kaons can be studied the same way as we did it for B-mesons:
CPLEAR, antiproton annihilation at rest: pp̄ −→ K−π+K0, pp̄ −→ K+π−K̄0.
Hence, the strangeness of the neutral kaon at production is tagged by measuring
the charge sign of the accompanying charged kaon.

A+−(t) ≡ PK̄0→π+π−−PK0→π+π−
PK̄0→π+π−+PK0→π+π−

= − 2e−(ΓS+ΓL)(t/2)[Re(ε) cos(∆mt))+Im(ε) sin(∆mt)]

e−ΓSt+|ε|2e−ΓLt

+ 2Re(ε) (we neglect direct CPV getting 0 at t = 0, but why is it not zero at
t→∞, when only KL remains?)
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D0 − D̄0 oscillations - also detected

The main problem (exp): x = ∆m/Γ < 1%
The main problem (theor): Strong interactions at small momenta.

Since 2× 2 mixing matrix of the first two generations is almost unitary, CPV in
charmed particles is very small, < 10−3.
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New Physics?
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New Physics??

RSMD = 0.299(3), RSMD∗ = 0.252(3)

BABAR, Belle, LHCb:

RmeasD = 0.407± 0.039± 0.024, RmeasD∗ = 0.304± 0.013± 0.007

RSMK(∗) = 1

LHCb, 1GeV2 < q2 < 6GeV2:

RmeasK = 0.745± 0.090± 0.036, RmeasK∗ = 0.69± 0.11± 0.5
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Prospects

Belle II ending in 2025, Upgrade II - 2030-th
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Problem 1. At LHC the values of signal strength
µf ≡ σ(pp −→ H +X) ∗Br(H −→ f)/()SM are measured. What will be the
change in µf in case of the fourth generation?

Problem 2. Prove that quarkonic triangles cancel leptonic ones when Qe = −Qp
(so hydrogen atoms are neutral) and Qn = Qν = 0 (thus neutrino and neutron
are neutral).

Problem 3. Prove that the areas of all unitarity triangles are the same. Hint:
Use equations from slide 17.)

Problem 4. CPV in kaon mixing. According to the diagram on slide 28
Γ12 ∼ (V ∗udVus)

2. Find an analogous expression for M12. Use unitarity of the
matrix V and eliminate V ∗cdVcs from M12. Observe that the quantity
M12Γ∗12 −M∗12Γ12 is proportional to the Jarlskog invariant
J = Im(V ∗udVusVtdV

∗
ts).
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Problem 5. Derive an expression for ACP (B0 −→ K+π−) and get the following
equality: ACP (B0) · ΓB0→Kπ = −ACP (Bs) · ΓBs→Kπ. Substituting
experimentally measured numbers from RPP (PDG) for asymmetries
ACP (B0) = −0.082(6), ACP (Bs) = 0.26(4) and branching ratios
Br(B0 → Kπ = 20 · 10−6), Br(Bs → Kπ = 5.7 · 10−6) check this equality.

Problem 6. In case of leptons the flavor mixing is described by the PMNS
matrix:  νe

νµ
ντ

 =

 Ve1 Ve2 Ve3
Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3

 ν1

ν2

ν3

 .

CPV means that the probability of νµ −→ νe oscillation Peµ does not coincide
with the probability of ν̄µ −→ ν̄e oscillation Pēµ̄.
Check that

Peµ − Pēµ̄ = 4Im(V ∗µ1Ve1Vµ2V
∗
e2) ∗ [sin(

∆m2
12

2E
x) + sin(

∆m2
31

2E
x) + sin(

∆m2
23

2E
x)].

Where is the CP conserving phase in this case?
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Problem 7. Violation of leptonic (muon and electron) numbers due to neutrino
mixing.
Estimate the branching ratio of the µ −→ eγ decay, which occurs in the
Standard Model due to analog of the penguin diagram from slide 45 without
splitting of the photon.

Problem 8. In the decays from which angle α is determined the quarks of the
first and third generations participate, so only 2 generations are involved. As it
was stated and demonstrated, at least 3 generations are needed for CPV. So,
how does it happen that in B −→ ρρ decays CP is violated?
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