

LAUROC1 Liquid Argon Upgrade Read Out Chip

OMEGA : S. Blin, S. Conforti, C. de La Taille, G. Martin-Chassard, N. Seguin-Moreau

LAL: K. Alkhoury, L. Duflot, N. Morange, L. Serin, S. Simion

BNL : H. Chen, M. Dabrovski H. Liu

LAUROC or l'AUROCH?

- LAUROC : liquid Argon Upgrade Read Out Chip
- Aurochs ['oːrɒks]: extinct species of Wild Ox
- Strong and bullish
- [Astérix en Hispanie]
- Suggested by Claude Colledani!

Context: ATLAS Liquid Argon calorimeter upgrade

- New design to speed up the digitization up to 40MHz and remove analog memories and obsolete components
- Replace preamps and shapers (and ADCs, SCAs, Glink...)
- Hybrid preamps used (0T configuration) → precise input impedance
 - Very low noise (\sim 0.4 nV/ \sqrt{Hz})
 - Large supplies -6 +12 V
 - Some precision components and uF capacitors
 - 3 flavours : 'A', 'B', 'D'
- Shapers used AMS 1.2um BiCMOS

Preamplifier requirements

- Precise input impedance : Z_{in} = 50 Ω (Front) or 25 Ω (Middle/Back) to terminate the cables from the detector
- Low noise < 10 Ω , with $C_d = 400 \text{ pF}$ (Front) or 1.5 nF (Middle/Back)
- Current sensitive configuration (large Cd, long duration signal) tp = 50 ns
 - $ENI^2 = \propto \frac{e_n^2 C_d^2}{t_p^3(\Delta)} + \beta \frac{i_n^2}{t_p(\Delta)}$ where Δ is a triangle
 - 0T50 400pF: ENI@50ns=55nA, 0T25 1.5nF: ENI@50ns=150nA
 - Spec : < 120 nA for 50 Ω and ENI < 300 nA for 25 Ω (pileup dominating at HL LHC)
- Dynamic range:
 - Front 50 Ω : from 50 nA noise up to 2 mA = 40 000 or 15.5 bits
 - Middle and back 25 Ω : from up 200 mA to 10 mA = 50 000 or 16 bits
- Radiation resistance : ~ 1 Mrad
 - → "Universal" preamplifier with selectable dynamic range and input impedance (25/50 Ohm)

LAUROC0 overview

- Integrates 8 channels with variants of preamp: PA 25 and 50 Ohms as well as a preamp 25-50 for which Zin can be selected by SC
- Preamp Input impedance
 - Super Common Gate: low input impedance
 - Fine tuning of Zin (±5%) possible with C2
- Noise :
- Amplifier = low noise voltage sensitive
- "Electronically cooled" resistor
- HG and LG outputs available :

Discriminator at the output of the LG PA used to short R_f and to avoid saturation of the HG

- ⇒ This system generates some non linearity
- ⇒ Lauroc1 built around this preamp "PA_25_50" but wo the discri system (= wo the HG output)

R0, C2 tunable to set absolute value of Zin Ci: 8-bit fine adjustement of Zin (±5%) using Slow Control parameters

 $4kTR_0$

 $(1 + |G|)^2$

LAUROC preamp detail

- Input transistor = 1V NMOS transistor, 3000 μm/ 0.25 μm
- Cascode trans: 2.5V NMOS transistor
- Dynamic range adjustable by R0
- Input impedance adjustment by Cf (8 bits)
- Possibilty to tune the current that flows in the input preamp
 - ibo_pa can be set to 2.5 mA or 5 mA using SC parameter
 - R_bleed: can add 6 mA using SC parameter

LAUROC1 overview

4 channels using the preamp_25_50 of Lauroc0 (Zin tuneable by SC)

- Channel 1, 2 and 3: LG preamp followed by one CRRC2 HG shaper and one CRRC2 LG shaper
- Channel 4: conservative channel using the discriminator and HG and LG PA for comparison

Preamps followed by CRRC2 shapers built around an amplifier: designed by Mietek Dabrowski @BNL

T tuneable between 1.25 ns and 20 ns

LAUROC0 25 Ω preamp: Simulations of Zin

Input Current (microA)

HG 25 Ω PA: Equivalent Output Noise

$$\frac{4kTR_0}{(1+|G|)^2} \text{ with G=-3}$$

$$R_0 = 100 \Omega = >$$

Equ. Noise: 0.32 nV/ $\sqrt{\text{Hz}}$ or 6.25 Ω

R0, C2 tunable to set absolute value of Zi Ci: 8-bit fine adjustement of Zin (±5%) using Slow Control parameters

- // noise dominated by $R_f=1K$ (51%) $R_{deq}=15K$ (26%)
- Series noise: R₀=100 (43%) NMOS ampli (24%) NMOS SCB amp (8%)

- \Rightarrow Gain at the output of the preamp = 1K/25=40
- ⇒ Input Noise:
- 18.4 nV/40=0.46 nV/ $\sqrt{\text{Hz}}$ or 13 Ω

CdLT LAUROC TWEPP 2019

LAUROC1 SETUP

2 setups:

Omega testboard (characterization)
LAL/BNL setup= Injection board (Toy cal. board)+ external Pulser (Larg Pulse) + DUT + ADC

Measurements performed on scope and using the full chain (with ADC)

The chip size is 2.8 mm x 2.5 mm.

Packaged in a LQFP 100 14*14 package.

LAUROC1 measurements: Zin vs C2 uniformity and vs freq.

Specification: Zin tunable, 25 ± 2.5 Ω and 50 Ω ± 5 Ω up to 20 MHz

Zin vs C2 (9 bits, LSB = 31.6 fF) for 3 channels

LAUROC1 25 Ω 10 mA config: Linearity measurements

Specifications

INL $< \pm 0.2\%$ on High Gain output

Linearity

INL < $\pm 0.5\%$ on 80% of Low Gain dynamic range

INL $< \pm 3\%$ on the full dynamic range

LAUROC1 50 Ω 2 mA config: Linearity measurements

Specifications

INL $< \pm 0.2\%$ on High Gain output

Linearity

INL < $\pm 0.5\%$ on 80% of Low Gain dynamic range

INL $< \pm 3\%$ on the full dynamic range

XTk (differential) between channels : 25 Ω 10 mA config

Injection of 400 µA in ch1, Xt in Ch 2 and Ch3. Cd= 1.5 nF on all channels

ENI vs tp 5-100% (injection of LArg pulses)

Specification:

< 300 nA @ tp $_{5-100\%}$ = 50 ns, Cd=1.5 nF for 25 Ω config < 120 nA @ tp $_{5-100\%}$ = 50 ns, Cd= 330 pF for 50 Ω config

LAUROC1 noise: below specification but larger than expected by 20% Series noise as expected : $e_n = 0.45 \text{ nV/}\sqrt{\text{Hz}}$ Ctot=36 pF and parallel noise negligible, even with leakage current

But large 1/f noise (400 e-)

Attributed to dielectric noise in input C1=30 pF MIM capacitor (goes as $4kT\omega$ Ctan δ): tan δ of SiO2= 0,002 => 278 e-

Special channel added in LAuroc2 with external capacitor for C1 to prove it definitively

COLI LAUROC TWEPP 2019

Series noise input transistor

 $3000/0.25 \mu m$ transistor at $I_D=4 mA$ Measurement = 2 * theory Simulation < theory !

New layout with minimized bulk contribution Measured noise now at 0.36 nV/ $\sqrt{\text{Hz}}$ close to calculations = 0.3nV (0.56nV before) Difference corresponds to 0.2 nV/ $\sqrt{\text{Hz}}$ ~ 2 Ω

Input preamp measurement

- LAUROC1: Low noise input preamp measured alone as charge preamp followed by external variable CRRC² shaper. Cf = 1 pF
 - All current sources switched off : preamp biased externally by external RL
 - Noise expected : ENC = 174 $e_n C_{tot} / \sqrt{t_p} (\delta) \oplus 166 i_n \sqrt{t_p} (\delta)$
 - Parallel noise due to Rf = 5 M and leakage current, measured
 I_G=10 nA

PAC ENC measurement @ Id=4mA

- Good agreement for series noise : $e_n = 0.45 \text{ nV/}\sqrt{\text{Hz}}$ Ctot=36 pF
- Parallel noise negligible, even with leakage current
- But large unexpected 1/f noise (400 e-)
- At ATLAS shaping (tp = 30 ns) 1/f increases noise by ~20%

ENC = 174 $e_n C_{tot} / J t_p (\delta) \oplus 166 i_n J t_p (\delta)$

1/f noise origin

Omega

- 1/f can originate from the 2 transistors or the MIM cap
- Negligible 1/f measured on input transistor
- 1/f at the same level on CH4 which does not have 2.5V cascode
- ⇒ remains dielectric noise in the MIM input capacitor

- Confirmed by measurement at small and large currents which shows 1/f unchanged
 - At 1 mA series noise plotted $e_n = 0.6 \text{ nV}/\sqrt{\text{Hz}}$
 - At 8 mA $e_n = 0.35 \text{ nV/}\sqrt{\text{Hz}}$

1/f input transistor alone

- ENC CH4 (1 V cascode)
- Input transistor alone (from previous run)
- Dielectric noise is parallel noise going as 4kTωCtanδ
- $\tan\delta$ of SiO2= 0,002 => 278 e-, not far from the 320 e- given by the fit

CdLT LAUROC TWEPP 2019 20

Noise summary

- Noise measurements on preamp alone show good agreement with theoretical noise
- Series noise :
 - $e_n = 0.6 \text{ nV/}\sqrt{\text{Hz}}$ @ 1 mA
 - $e_n = 0.45 \text{ nV/}\sqrt{\text{Hz}}$ @ Id = 4 mA
 - $e_n = 0.35 \text{ nV/}\sqrt{\text{Hz}}$ @ Id = 8 mA
 - Total capacitance 36 pF: 10% parasitics in MIM + input transistor
- Parallel noise :
 - i_n = 0.09 pA/√Hz due to Rf=5M and 10 nA gate leakage current
 - Larger than expected but still negligible
- But large 1/f contribution
 - Independant of drain current or cascode type
 - Not seen on input transistor alone
 - Attributed to dielectric noise in input 30 pF MIM capacitor (goes as 4kTωCtanδ): tanδ of SiO2= 0,002 => 278 e-, not far from the 320 e- given by the fit
 - Increases series noise by ~20%
 - Would need a special channel with external capacitor to prove it definitively

- Good performance for impedance matching and linearity
- Noise models were wrong for large transistors and large current: go back to BSIM3 model [J. Kaplon]
- Non negligible 1/f noise attributed to MIM caps
- Interesting design lower noise at BNL with fully differential amplifier [ALFE M. Dabrovski et al.]
- Final versions of LAUROC and ALFE submitted in sept.

ATLAS at USC :

CdLT LAUROC TWEPP 2019 23

Lauroc1 status 3 October 2018

SIMULATIONS: Channel <1:3>

LG_Preamp_25_50, followed by a low noise amplifier with a gain=20 for the HG path => Shaper noise negligible

Dynamic range of the 25 Ω preamp tuneable by SC: 5 mA or 10 mA

Cload ADC= 20 pF Simulations @ T=15 ns Ratio HG/LG ≈ 25

- LG_preamp 25 Ω with a dynamic range of 5 mA (tuned by SC), Cd=1.5
 nF
 - HG path: 250 μ A give ± 983 mV, tp= 46.5 ns and **ENI= 167 nA**
 - LG path: 5 mA give $\pm 988 \text{ mV}$, tp=46 ns
- LG_preamp 25 Ω with a dynamic range of 10 mA (tuned by SC), Cd=1.5
 nF
 - HG path: 500 μA give ± 930 mV, tp= 46 ns and ENI= 220 nA
 - LG path: 10 mA give ± 920 mV, tp= 46 ns
- LG_preamp 50 Ω with a dynamic range of 2 mA, Cd=400 pF
 - HG path: 75 μ A give \pm 945 mV, tp= 48 ns and **ENI= 53 nA**
 - LG path: $2 \text{ mA give } \pm 923 \text{ mV}$, tp= 46 ns

Lauroc1 status 3 October 2018

LAUROC2 LAYOUT (July 8): 3 mm x 2 mm

2 power domains well separated: vdd_pa= 2.5V (total= 100 mA) and vdd_sh= 1.2V (total=125 mA)

QFN or QFP 128 pins

Same pinout for HEC, ALFE and LAUROC ASICs

Pad ring of Lauroc avalable on LARg SOS server

Final ASIC: should be in BGA package

- Very stable termination (R, N indep. of signal current and active components)
- Fully-differential output

CdLT LAUROC TWEPP 2019