The analog readout channel for the Si(Li) tracker of the GAPS experiment

Elisa Riceputi

Massimo Manghisoni - Mauro Sonzogni

Lodovico Ratti - Valerio Re

Lorenzo Fabris

Mirko Boezio - Gianluigi Zampa

Topical Workshop on Electronics for Particle Physics
September 3rd 2019
Santiago de Compostela, Spain

Outline

- Motivations
- The GAPS experiment
- The Front-End electronics for the GAPS tracker
- Design architecture choices
- Experimental setup and measurements
- Conclusions

General AntiParticle Spectrometer

- Two towering problems of early 21st century physics:
 - Dark Matter (DM)
 - Dark Energy (DE)
- Dark Matter is the 85% of matter in the known universe
- Balloon experiments under development will have the potential to detect antideuterons, which may be produced in CDM annihilations
- GAPS: experiment aiming to detect low energy antideuterons (<3GeV/n) produced in the annihilation of CDM particles in the Galactic halo
- Prototype flight (pGAPS) in 2012 @ Taiki, JAXA balloon facility in Japan
- Balloon flight from McMurdo station Antarctica in 2021 (launch approved by NASA)
- The project is funded by NASA, JAXA, INFN, ASI

The Instrument

- GAPS relies on 3 techniques to uniquely identify antideuterons:
 - depth sensing and dE/dx loss
 - simultaneous detection of X-rays
 - multiplicity of pions, protons and other particles emitted from the nuclear annihilation

- 10 layers of Si(Li) wafers:
 - 12 × 12 detectors each
- Si(Li) detector:
 - 4 inch diameter 2.5 mm thick
 - 8 strips
 - adjacent tracking layers have their strips positioned orthogonally
 - modest 3-D tracking

Antiparticle identification with GAPS

- Time-Of-Flight system measures velocity of the incoming particle (trigger)
- Loses energy in layers of semiconducting Silicon targets/detectors
- Stops, forming exotic excited atom
- Atom de-excites, emitting X-rays
- Remaining nucleus annihilates, emitting pions and protons

- Expected Energy range:
 10 keV 100 MeV
- Required energy resolution in low energy range 4 keV
- Operating temperature
 -40°C → low power
 consumption needed

Main requirements for the front-end electronics

- pGAPS used a discrete amplifier for detector readout
- Goal: ASIC design for the final 2021 flight
- Modular structure:
 - 4 sensors per module
 - 1 ASIC per module
 - Channels per ASIC: 32
 - Operating temperature: -40 °C
 - Power dissipation: <10 mW/channel
 - Signal polarity: electrons
 - Dynamic range: 10 keV-100 MeV
 - Analog Resolution: 4 keV (FWHM)
 - Threshold: 10 keV
 - Detector leakage current: 5-10 nA (50 nA for tests at higher temperature)

Analog readout channel

Main design features			
Bias Voltage	1.8 V		
Input device W/L	2000/0.5		
Input Device Drain Current	1.6 mA		
Power Consumption	4.5 mW		
Feedback device	240/60		

- Architecture: active folded cascode (with local feedback) loaded by an active cascoded load
- Sensitivity: dynamic compression with MOS capacitor
- Reset: performed by a continuous time feedback implemented with a Krummenacher network

Dynamic Signal Compression

- It is based on the nonlinear behavior of a MOSFET capacitor operating in the inversion mode
- Suitable choice of W and L to set the gain in the low and high energy regime

$$\begin{cases} C_{gs,min} \approx C_{ov} = \varepsilon \frac{2W\Delta L}{t_{ox}}, & V_{gs} < V_{th} \\ C_{gs,max} = \varepsilon \frac{WL}{t_{ox}}, & V_{gs} > V_{th} \end{cases}$$

$$Gain \propto \frac{1}{C_f}$$

(*) M. Manghisoni et al., "Dynamic compression of the signal in a charge sensitive amplifier: from concept to design", IEEE TNS

Improved charge restoration network

- Krummenacher network to comply with the high detector leakage current
 - I_{leak} = 5-10 nA (detection at T= -40°C)
 - I_{leak} = 50 nA (test at higher T)
- Additional degeneration resistance R_K

#	Peaking Time (μs)
000	0.30
001	0.50
010	0.65
011	0.85
100	1.00
101	1.30
110	1.50
111	1.80

- Unipolar semi-Gaussian (RC 2 CR) shaping function $t_p=2 au$
- Peking time selection (3 bit): obtained by switching capacitances C_1 , C_2 , C_p and C_i in order to keep constant the ratios:

$$\frac{C_2}{C_1}$$
 and $G_f = \frac{C_2}{t_p}$

GAPS

Analog Channel Time Response

- Prototypes for the final 32 channel ASICs
- Submitted and fabricated in late 2018
 - SLIDER 4:
 - 4 analog channels
 - No digital backend
 - 2 channels with all analog block output accessible

- SLIDER 8:
 - 8 analog channels
 - digital backend
 - 11 bit ADC
 - no access to the analog blocks

Experimental setup

- Two different motherboard
- Oscilloscope LeCroy Wavesurfer 454
- LabView Interface

LabView Interface

- Slider4 and Slider8 control setup
- Voltage threshold and calibration setting
- Oscilloscope measurements setting
- Automatic measurements with voltage reference sweeps fixing initial, final and step values

SLIDER4: CSA - Simulation vs Measurements

- Charge sensitivity:
 - High gain region: 140 μ V/keV ($C_f = 190 \text{ fF}$)
 - Low gain region: 4.5 μ V/keV ($C_f = 14.5 pF$)
- Dynamic range: the CSA covers the full dynamic range of 100 MeV
- Rise time: $t_r \approx 15 \text{ ns}$
- Very promising correlation between simulation and measurements

GAPS

SLIDER4: Shaper Measurements

- Calibration Voltage V_{HI} = 0.2 V
- Amplitude coherent with the selected calibration voltage

SLIDER8: NMOSFET characterization

- Single device with the same geometry of the CSA input device
- Characterization of the CSA Input device at the expected DC working point:
 - $V_{DS} = 1.29 \text{ V}$
 - $V_{GS} = 294 \text{ mV}$
 - $I_D = 1.62 \text{ mA}$
 - @ 27°C
- Static Measurements:
 - performed by means of a Semiconductor Parameter Analyzer
 - I_D - V_{GS} at fixed V_{DS}
- Noise Voltage Spectrum Measurement:
 - performed by means of a purposely developed wide-band interface circuit, which allows for noise measurements in the 1 kHz-100 MHz range and a Network/Spectrum Impedence Analyzer

Noise
$$PSD = A_f \frac{1}{f^{\alpha}} + S_w^2$$

	α	$A_f(V^2)$	$S_w\left(\frac{nV}{\sqrt{Hz}}\right)$
Simulation	0.98	$3.7 \cdot 10^{-14}$	0.62
Measurement	0.95	$8.0 \cdot 10^{-14}$	0.73

$$S_w^2 = 4k_B T \frac{\Gamma}{g_m}$$

• $\Gamma = 0.96$ with measured $g_m = 30.5$ mS

SLIDER8: Channel

The ASIC can operate in two modes:

- Self-trigger mode (calibration):
 - if an event/injection occurs
 - ZCD (busy signal) triggers the readout of the Sample&Hold
- Acquisition mode:
 - if the channel fires (SOT=high)
 - the S&H output is sampled at the CONV signal
- By varying the delay between INJ and CONV signal it is possible to reconstruct the channel time response

Channel 3 – Calibration Code 20000 DAC (15.6 MeV)

#	τ _p Sim [μs]	τ _p Meas [μs]
1	0.30	0.31
2	0.50	0.50
3	0.65	0.68
4	0.85	0.85
5	1.00	1.02
6	1.30	1.26
7	1.50	1.49
8	1.80	1.73

- Good agreement between simulated and measured peaking times
- Amplitude decreases with t_p due to the zero in the CSA feedback network

SLIDER8: Channel transfer function

SLIDER8: Threshold scan

Interpolating function:

$$F(x) = \frac{1}{2} \cdot \operatorname{erfc}\left(\frac{x - V_{th}}{\sqrt{2}\sigma_q}\right)$$

- where
 - σ_q is the rms value of the shaper output voltage
 - V_{Th} is the offset of the SOT discriminator
- if the charge sensitivity G is known

$$ENC = \frac{\sigma_q}{G}$$

SLIDER8: FWHM

- Noise at room temperature higher than expected because of:
 - a higher parasitic resistance in series to the CSA input (can be eliminated with a new layout)
 - according to measurement performed on the single MOS device, flicker noise coefficient is larger with respect to model
- Knowing that the Full Width at Half Maximum is:

$$FWHM = 2.35 \cdot \varepsilon \frac{ENC}{q}$$

- Considering the measured A_f coefficient and an higher parasitic resistance, FWHM is in agreement with simulation results
- At peaking times exceeding 0.8µs simulations predict a 30% reduction of the noise going from room temperature down to -40°C
- At $0.8\mu s$ and a C_d = 40pF, a 3.6keV FWHM can be expected at the GAPS operating conditions (to be verified with measurements)

Conclusions and next steps

- Characterization of the first prototype of SLIDER4 and SLIDER8 ASIC
- Good correlation between simulated data and measurements:
 - CSA output transfer function
 - Shaper behavior @ different peaking times
 - Resolution
- Useful information for the design of pSLIDER32, a prototype with 32 analog channels

Next Steps:

- Test with detector in order to validate Krummenacher performance
- Improving the statistics with more samples
- Defining the most useful tests enabling the differentiation between good and bad ASICs (mass production)

pSLIDER32 submitted in July 2019 expecetd delivery in second half of September

The GAPS collaboration

TOKAI UNIVERSITY

Thanks for your attention

- Contacts:
 - www.unibg.it/microlab
 - elisa.riceputi@unibg.it

Spare Slides

SLIDER8: drain current and transconductance

ullet Simulation and measurement show a discrepancy with $m V_{GS} > 300~mV$

@ I _D = 1.62 mA	Simulation	Measurement
g_{m}	34.5 mS	30.5 mS