

picoTDC: A 3ps Bin Size 64 Channel TDC for HEP Experiments

Moritz Horstmann (CERN/CAEN)

Jorgen Christiansen, Jeffrey Prinzie (KU Leuven), Samuele Altruda

TDC in the Measurement Chain

Design Overview

picoTDC Architecture

64 channels, 3ps or 12ps time binning, 200us dynamic range

picoTDC Architecture

Two Stage Time Interpolation

1st Stage: DLL

- 64 taps, 12.2ps delay
- Self-Calibrating

2nd Stage: Resistive Interpolation

- > Simulation based optimization of resistor values

picoTDC Architecture

Capture Flip Flops

- Revisited design, timing vs. power very critical, 16k capture Flip Flops running @1.28GHz
- Optimized M/S Flip Flop followed by standard cell Flip Flop for metastability resolution
- Monte Carlo simulations show a mismatch of 800fs RMS, noise influence of 240fs RMS

Sources of Measurement Deviation

- Bin size 3ps -> 880fs RMS
- PLL: 350fs RMS phase Jitter
- DLL: 400fs RMS phase Jitter, INL/DNL can be adjusted
- Clock Distribution: <500fs jitter
- Capture FFs: <1ps mismatch (DNL)
- Hit receivers: <1ps jitter
- ~1.75ps RMS total deviation
- External sources: input clock jitter, signal preprocessing

Possible CAEN Modules With picoTDC

The idea of FERS platform

Single card housing Front End ASICs, ADC and/or TDC, FPGA, I/Os, interfaces and, in some cases, detector power supply

Size of \sim 15 x 6 cm (for the A5202) communication interfaces: Signals from the detectors **TDlink** (sync + commands + data) come through 0.8 mm edge or Ethernet, USB 2.0 (data only, contacts mating a Samtec mainly used for evaluation) HSEC8-170-01 connector Auxiliary I/Os for sub-ns timing and low latency trigger distribution (alternative to TDlink) **FERS** Concentrator 1/10 GbE. USB 3.0 FERS units FERS units Networ TDlink

Prototype Results

picoTDC on Test Cards

Instrumentation for Testing

Additional tests with Silicon Labs Si5341 evaluation board for very low jitter measurements

3ps Bin Code Density Test

Not adjusted

Adjusted

Code Density Test (CDT): Generate random hits uncorrelated to the reference. -> Number of hits in each bin is equivalent to the bin size. Adjustment is for single channel only

Code Density Test on Multiple Channels

Coarse time, not adjusted, channels 32-64, DNL 3.48ps, Common DNL 1.25ps

Capture FF Mismatch

- Bug in extraction of fingered transistors caused simulation showing only half of the mismatch
- Resizing of 4 transistors for production version will reduce the mismatch to expected levels, increasing the power slightly

Time Sweep Measurements

Coarse mode, 12ps bin size

Not adjusted

Adjusted

Time Sweep Measurements

Fine mode, 3ps bin size

Not adjusted

Adjusted

Sweep Measurements Deviation

Performance Summary

		Code De	ensity Test	Sweep Test					
	adjusted	DNL	INL	INL	INL avg.				
Coarse time	X	2.75ps	2.97ps	4.25ps	3.47ps				
	✓	0.27ps	0.29ps	3.65ps	2.69ps				
Fine time	×	2.81ps	3.68ps	3.74ps	3.06ps				
	<	0.39ps	0.35ps	1.35ps	0.43ps				

CDT excludes jitter, quantization

Temperature performance	Variation limited to 1 LSB pp	28 °C to 42 °C	<1ps/ºC			
Voltage performance	Variation limited to 7 LSB pp	1.10V to 1.30V	<0.5ps/mV			
Crosstalk test	Influence limited Worst case one cha	nfluence limited to 2 LSB orst case one channel vs. all				

Backup Slides

picoTDC Architecture

Low Jitter PLL

- Clock multiplication from 40MHz to 1.28 (2.56) GHz
 - Low jitter critical
 - Jitter filtering of 40MHz clock to the extent possible
 - 40MHz reference MUST be very clean
 - LC based oscillator
- Prototyped & Tested
- Measurements very promising (340fs RMS jitter)
- Designed by Jeffrey Prinzie, KU Leuven
- Talk at TWEPP 2015:
 A low jitter PLL frequency synthesizer for high
 resolution TDCs in 65nm CMOS technology

Phase Noise vs. Freq. Offset

picoTDC Architecture

Constraints on Hit Signals

- One edge per 1.28GHz-Cycle (~0.8ns)
- Internal analog glitch filter after hit receiver
 - Filter time can be programmed to ensure 0.8ns
 - Or up to 10ns for filtering e.g. oscillations
- Small derandomizer (4 hits) for each channel running @1.28GHz
- Sustainable rate to channel buffer 320MHz, trigger matching running @320MHz for each channel separate

Logic Features

- Triggered with configurable latency and length, overlap possible, or untriggered
- Naturally overflowing counter used for calculating trigger matches, TOT etc.
- Counter with arbitrary overflow and reset for machine cycle, can be inserted in event headers when triggered

picoTDC Architecture

Electrical Interfaces

- Hits: Differential (LVDS "compatible", common mode from 0.2V to 1.2V)
 - Highest speed (resolution) @ ~800mV common mode
- Time reference: 40MHz differential
 - Low jitter reference critical for high time resolution
- Trigger/Event-Rst/BX-Rst/Reset: Sync Yes/No
- Control/monitoring: I²C at CMOS 1.2V-levels
- Readout: 4 readout ports of 8 differential signals
 - Common mode 0.6V, programmable current 1-5mA
 - Compatible with LpGBT and FPGAs
- Packaging: 400 BGA (1mm pitch)

Config / Control / Status Interface

- I²C Interface, up to 1MBit/s
- 1.2V CMOS Levels
- 348 Bytes configuration / control
 - Additional 322 bytes delay adjust
- 300 Bytes status

Readout

- 1 or 4 differential readout ports with 8 bits
 - 40 320MHz
 - Bandwidth:
 - Min 320Mbits/s (~0.15 Mhits/s per channel)
 - Max 10Gbits/s (~4 Mhits/s per channel)
- Readout data: 32 bit words
 - TDC data, headers, trailers etc.

Estimated Power Consumption

Dependent on hit rate, values based on 1 MHz per channel

- High resolution, 64 channels:
- High resolution, 32 channels:
- Low Resolution, 64 channels:
- Low Resolution, 32 channels:

1300mW 900mW 850mW 550mW

Verification Environment

70,000,000fs		13,980,000,000fs											TimeA = 13,985,211,002fs											
									001															
	HOI	0063	U		,000	****				82180110 19220000					10	*****								
			J L	J L	J L	J L	J L V ne	J L	J L V ne	J L V ne	J L	J L	J L V ne	J L V ne	J I			L L	J L V ne	V ne	V ON V			
	<u>ر تندی</u> ا		Λ	Λ	Λ	Λ	Λ	<u>,</u>	Λ	Λ	Λ <u></u>	Λ	Ě	Λ	<u>^~</u>	<u>_/ ~ ~</u>	Ť	<u></u>	<u>,</u>	<u></u>	<u>, </u>			
28398880															30391780									
(00218226																								
	{ 00000011																							
					_																			
	T: 1	A010	0630		OF:	004	1898	0) н1:	821	3011	0	<mark>(</mark> н2 :	922	2000	00	(0 P	: 024	1FB8	30				
FFFF	χ 0000								· · · · · · · · · · · · · · · · · · ·															
									15	: 3E	\$1E5	80												
									_															
									12R: 32423180															
								11R: 2E41E280																
10F: 2841A380							10R: 2A418580																	
									Van	0.04		ō												
									8R: 22429380															
								V 578 -	7F: 10422080															
								V SR-	5p: 16418680															
								48:	4F: 1041E180															
								37.	3F: 0c41F980															

- Verification in SystemVerilog
- Use cases can be defined and automatically tested, visualization of buffer occupancy, lost hits etc.

TWEPP 2019 04.09.2019 5

23591087ps: Missing Falling hit at channel

Verification Features

- Environment supports and verifies all TDC features
 - Triggered / untriggered
 - Rising / rising&falling / TOT
 - Different counter and reset settings
- Extensive test cases
 - High / low / burst hit rate
 - High / low trigger rate, overlapping triggers
- Specific use cases can be defined, verified

Measurement Scheme

Start - Stop Measurement

- Measure relative time interval between two local events
- Small local systems and low power applications

Time Tagging

- Measure "absolute" time of an event (Relative to a time reference: clock)
- For large scale systems with many channels all synchronized to the same reference

Capture Scheme

Synchronous

Asynchronous

Coarse Decoding in Timing Macro

Crosstalk Test

Channel 31 vs. all channels, coarse mode, LSB 12ps

CERN

12ps Bin Code Density Test

Not adjusted

Adjusted

25ns Sweep Deviation

