

Versatile firmware for the Common Readout Unit (CRU) of the LHC ALICE experiment

Olivier Bourrion on behalf of the CRU team

ALICE

Outline

- Introduction
- Requirements
- Firmware description
 - Overview
 - GBT interface
 - TTC interface
 - Data path
 - Readout control
 - PCle
- Summary

A Common Readout Unit for upgraded detectors

Upgraded detectors

- 6) ITS-IB | Inner Tracking System- inner barrel
- 7) ITS-OB | Inner Tracking System- Outer barrel
- 8) MCH | Muon Tracking chamber
- 9) MFT | Muon Forward Tracker
- 10) MID | Muon Identifier
- 11) CPV | Charged Particule Veto
- 12) TOF | Time Of Flight
- 2,13,14,17) FIT | Fast Interaction Trigger
- 15) TPC | Time Of Flight
- 16) TRD | Transition Radiation Detector
- 18) ZDC | Zero Degree Calorimeter

- For run 3 and 4, ALICE moves to a continuous readout
 - ALICE will produce 3.5 TB/s of data
- The upgraded detectors (10) will use the CRU to comply with this scheme
- A common firmware was developed for the CRU to share efforts

CRU in the system

- The CRU is the interface between :
 - the detector front-end electronics
 - The O² facility
 - The Detector Control System
 - The Trigger System

- O² facility
 - 2-3 CRUs are hosted by First Level Processor (FLP)
 - FLP communicates with
 Event Processing Nodes
 (EPN) through the network

CRU Hardware

Hardware was designed for and by LHCb (named PCIe40)

- One Small Factor Pluggable (SFP) cage used as interface with the trigger system
- Up to 24 GBT links (or 36 for TRD) used
- PCIe interface with FLP, and thus DAQ and DCS

Continuous readout in ALICE

- Continuous stream is sliced in Time Frames of 22 ms (size of data sample requested by reconstruction)
- Time Frames are divided in 256 Heart Beat Frame (HBF) of 1 orbit duration (89.4 μs).
- CRU collect data continuously and check successful HBF reception in each FLP
- For each HBF an (not) ACKnowledge is delivered to the Central Trigger Processor
- Upon missing ACK
 - => CTP requests all CRU to drop the HBF until the end of Time Frame to allow recovery.

Detector requirements

- GBT link type ("gbt-mode" or "wide")
 - Downstream, either:
 - Trigger messages (TTS) or only clocking
 - Slow control
 - Upstream (FEE → CRU)
 - Readout (streaming mode or packet mode)
 - Slow control acknowledge
 - A maximum of 24 GBT links

- Interface with trigger system
 - Various trigger bit
 - Busy through CRU (TRD only)
- PCle readout (gen3 x16)

Detector	Number of CRU	TX/RX per CRU	User Logic	GBT with FEC ("gbt-mode")	TTS through CRU	DCS through CRU
CPV	1	24/24	N	Υ	Υ	Y (SCA)
FIT	2	24/24	N	Υ	Υ	
ITS	26	12/24	TBD	Y	clock only	Y (single word transfert)
MCH	32	24/24	Υ	Υ	Υ	Y (SCA)
MFT	11	12/24	N	Y	clock only	Y (single word transfert)
MID	2	24/24	TBD	Υ	Υ	Y (SCA)
TOF	4	24/24	TBD	Υ	Υ	Y (SCA)
TPC	360	24/24 (50%) 0/24 (50%)	Υ	N	Y	Y (SCA)
TRD	37	0/36	Υ	not GBT		
ZDC	1	24/24	N	Υ	Υ	

=> Most of the detectors need similar features (in blue)

Common Firmware overview

- The firmware was developed to fit Alice needs :
 - Share common features : PCIe, trigger and timing, GBT
 - Readout in raw mode (no processing in CRU) for all detectors
 - Clock and trigger distribution
 - FEE configuration
- Detector specific features allow for specific User Logic for some detectors
 - Online data processing (baseline correction, zero suppression)
 - User logic is inserted in common firmware => specific compilation
 - At any moment, can switch from raw mode to User Logic
- Self-testing capabilities
 - Data loop-back and automatic checks

Firmware description: GBT

Giga Bit Transceiver interface (GBT)

- GBT is part of the "radiation hard optical link project" → bi-directional optical link
- Allows "GBT-frame" or "wide-bus"

- CRU uses up to 24 GBT links, down-link is latency optimized
- GBT_wrapper contains a modified version of the GBT-FPGA provided by CERN electronics group
 - Dynamic switching between "GBT-frame" and "wide-bus" => covers more use cases
- Test modes
 - External loop-back (with fibers, readout electronics) => allow validation of front-end → CRU communication
- The internal loop-back (via transceiver) => Allows checking during operation TWEPP 2019

Firmware description: TTC

Trigger Timing Control interface (1/2)

- Uses the ONU provided by CERN electronics group
 - CRU system clock is recovered from Passive Optical Network
 - Recovered clock is used and forwarded to FEE by GBT
 - Reception of trigger messages (200 bit @ 40MHz)
 - Trigger bit, bunch crossing number, orbit number, ...
 - Emission of Heart Beat ACKnowledge (56 bit)
 - Time domain multiplexing up-link, slot available every number of ONU x 125 ns
 - 4 ONU → slot every 600 ns!

Trigger Timing Control interface (2/2)

A trigger emulator is implemented :

- To mimic trigger messages
- To simulate readout flow control
- Can be used by detectors for functional testing with local oscillator

Pattern player

- Generates a programmable sequence to transmit to FEE, fired by a trigger bit
- An example: SYNC RST sequence for SAMPA chip
 - For Time Projection Chamber (TPC), Muon Forward Tracker (MCH), ...

Trigger router

- Used to replicate, or reroute a trigger bit to several positions (replicate bit on various e-links)
- For Muon IDentifier (MID)

Firmware description: other down-link features

Other down-link features

- DDG (Dedicated Data Generator)
 - Produce streaming or packet data
 - Packet data with fixed/random length, fixed/random idle
- Slow control
 - SWT (Single Word Transaction) is a slow control protocol intermingled with data flow (for ITS)
 - GBT-SCA (Slow Control Adapter) produces slow control transactions for GBTx
 - Both are controlled by PCIe

Firmware description: DATAPATH WRAPPER

DATAPATH WRAPPER overview

- Collect data from multiple sources
 - Produces up to 7.68 GB/s per datapath wrapper
- Construct data packets for streaming detectors → chop the stream
 - Insert Reduced Data Header (RDH) at regular interval

- RDH: Heart Beat ID, Link ID, STOP bit, page counter, length, ...
- Removes all data packets from a HBF if requested by the trigger system
- Finally, presents the data to the PCIe endpoints

1) Data from multiple sources (ID) in parallel (GBT, User Logic, ...)

- 1) Data from multiple sources (ID) in parallel (GBT, User Logic, ...)
- 2) Aggregation in pktmuxfifo → packets are interleaved

- 1) Data from multiple sources (ID) in parallel (GBT, User Logic, ...)
- 2) Aggregation in pktmuxfifo → packets are interleaved
- 3) Identify packets as they pass-by ⇒ **SCRUTINIZER**

- 1) Data from multiple sources (ID) in parallel (GBT, User Logic, ...)
- 2) Aggregation in pktmuxfifo → packets are interleaved
- 3) Identify packets as they pass-by ⇒ **SCRUTINIZER**

4) Remove packets marked for deletion if necessary

Firmware description: READOUT CONTROL

READOUT CONTROL Overview

- Checks interleaved packets as they are flying-by
- Successful HBF reception: if for each LINKID, START and STOP packets were received and all packets of links were consecutive

 HBF reception status is transmitted upstream to the Trigger system: trigger message

Firmware description: PCie

CONCLUSION

- An adaptable and common firmware was developed to cover the needs of the upgraded detectors
 - Development and validation efforts were shared
 - Lab software framework is delivered along with the firmware (python library)
 - CRU and its common firmware is already used extensively and successfully by several detectors
- Continuous readout mode was already validated
- Resources usage of the common firmware (with GBT dynamic switching)
 - For 24 GBT links: 121,297 / 427,200 ALM (28 %)