

Development of the Compact Processing Module for the ATLAS Tile Calorimeter Phase-II Upgrade

Fernando Carrió Argos Instituto de Física Corpuscular (CSIC-UV) on behalf of the ATLAS Tile Calorimeter System

September 5th 2019

Work supported by the Spanish Ministry of Science and the European Regional Development Funds - FPA2015-65652-C4-2-R

OUTLINE

- INTRODUCTION
 - TILE CALORIMETER
 - PHASE II UPGRADE
- TILE PPR DEMONSTRATOR
 - HARDWARE AND FIRMWARE
 - TEST BEAM CAMPAIGNS
- COMPACT PROCESSING MODULE
 - HARDWARE AND PCB LAYOUT
 - ATCA CARRIER BOARD
 - FUTURE PLANS
- SUMMARY

INTRODUCTION

ATLAS Tile Calorimeter

- Segmented calorimeter made of steel plates and plastic scintillator tiles covering the most central region of the ATLAS experiment
- Measures energies of hadrons, jets, τ -leptons and E_T^{miss}
- 4 partitions: EBA, LBA, LBC, EBC
- Each partition has 64 modules
 - One drawer hosts up to 48 PMTs

Tile Barrel Tile Extended Barrel

- Light produced by a charged particle passing through a plastic scintillating tile is transmitted to the PMTs
- Scintillator tiles are read out using wavelength shifting fibers coupled to PMTs
- Around **10,000 readout channels**

High Luminosity-LHC

- LHC plans to increase the instantaneous luminosity by a factor 5-7 around 2026→ High Luminosity-LHC
 - Expected number of collision per bunch crossing will increase up to 200
 - New Trigger and Data AcQuisition architecture with full granularity and digital inputs
- **TileCal:** Major replacement of on-detector and off-detector readout electronics
 - Aging of electronics due to time and radiation
 - Current readout system will not be compatible with the upgraded TDAQ architecture
 - Other detector elements as scintillators or PMTs will be kept

New readout strategy for HL-LHC

- On-detector electronics will transmit full digital data to the off-electronics at the LHC frequency \rightarrow <u>40 Tbps to read out the entire detector and ~6,000 optical fibres</u>
- Buffer pipelines are moved to off-detector electronics
- Redundancy in data links and power distribution \rightarrow improve system reliability

Phase II off-detector electronics - PreProcessor

• Tile PreProcessor is the core element of the off-detector electronics

- Data processing and handling from on-detector electronics
- Clock and DCS distribution towards the TileCal modules
- Interface with the ATLAS trigger and ATLAS readout systems (FELIX)

- 32 TilePPr boards in ATCA format: ATCA carrier + 4 Compact Processing Modules
- 32 TileTDAQ-I: Interfaces with L0Calo, Global, L0Muon and FELIX system

TILE PPR DEMONSTRATOR

Fully functional prototype - Demonstrator

Tile PreProcessor Demonstrator

- Double mid-size AMC (µTCA / ATCA carrier)
- Xilinx Virtex 7 (48 GTX), Kintex 7 (28 GTX)
- 4 QSFPs, TX+RX Avago MiniPODs
- TI CDCE62005 jitter cleaner + ADN2814
- 1/2 of the Compact Processing Module
 Operates 1 TileCal module → 160 Gbps
 - Half number of optical channels
- Interfaces with legacy and Phase II ATLAS readout systems (ROD, FELIX)
- CPM hw & fw design largely based on this system

Block diagram of the PPr Demo

PPr Demonstrator

Firmware

- 16 GBT links with on-detector electronics
 - 9.6 Gbps for uplinks, 4.8 Gbps for downlinks
- Different blocks for data handling, DCS configuration and monitoring
- 96 pipelines memories with 12.8 µs depth (48 PMT channels x 2 gains)
- TTC decodification
 - Level-1 Accept signal and commands
 - LHC clock recovery
- Three different readout paths:
 - FELIX (GBT)
 - ROD (G-Link)
 - Ethernet port (IPBus)
- Controlled through Ethernet IPBus

	Virtex 7 485T					
Slice Logic Utilization	Used	Available	Utilization			
Slice Registers	152,696	607,200	25%			
Slice LUTs	154,811	303,600	50%			
RAMB36E1	107	1,030	10%			
RAMB18E1	741	2,060	35%			
MMCMs	4	14	28%			
PLLs	2	14	14%			
Transceivers	19 + 4	56	41%			
DSP slices	1152	2,800	41%			

Test Beam setup

- Located at the Super Proton Synchrotron (SPS) North Area on the H8 beam line
 - 7 test beam campaigns between 2015 and 2018
- Detector modules equipped with upgraded and legacy electronics for performance comparison
- Fully integrated with the ATLAS TDAQ software and DCS system
 - Front-end electronics configuration
 - Physics, calibration and laser runs
 - HV and LV control/monitoring
 - Data taking through FELIX / legacy system

Test beam setup at H8 line

• Demonstrator module inserted into ATLAS experiment last July!!

COMPACT PROCESSING MODULE

Compact Processing Module - overview

Kintex UltraScale FPGA

- IFIC INSTITUT DE FISICA CORPUSCULAR
- High-speed interface with on-detector electronics \rightarrow 32 links@4.8/9.6 Gbps
 - Operation and readout of 2 TileCal modules: 96 PMT channels with 2 gains
 - Real-time energy reconstruction @40 MHz per channel and gain
 - Data buffering of 10 µs per channel and gain
- High-speed interface with ATLAS trigger system and FELIX
 - Reconstructed energy **per cell** to TDAQi @40 MHz \rightarrow 4 links@9.6 Gbps
 - Level-0 trigger selected events to FELIX @1 MHz \rightarrow 1 link@9.6 Gbps
- Using KU115 as baseline and KU085 for prototyping

- Artix 7 FPGA provides slow control and monitoring for all the peripherals
 - Configuration/monitoring of the Ethernet PHY, optical modules and sensors
 - Power management and monitoring through a LTC2980 chip
 - Implementation of a clock phase monitoring system based on the **DDMTD circuit**
- High-performance jitter cleaner to distribute the clock to the KU transceivers \rightarrow Silicon Labs SI5345
 - LHC clock recovered from FELIX interface and distributed back to the Kintex UltraScale

Optical modules and mechanics

- 8 FireFly modules connected to the KU FPGA
 - Limited area on the PCB and front panel
 - 4 RX/TX channels up to 14 Gbps
 - 2 Firefly modules connected to a single MXC connector
- Fibre routing on the CPM PCB is challenging
 - Maximum bend radius of fibres is 7.5mm
 - Minimum fibre length+FireFly is 11 cm (Samtec)
 - Plastic clip wires to route the fibers Essentra MWSET

Mechanical mockup of the Compact Processing Module

PCB layout design

- Total of <u>14 layers</u> → 1.6 mm thickness
 - 8 layers for PWR/GND, 6 layers for signals
 - ISOLA FR408HR ($\varepsilon_r = 3.68$, tan $\delta = 0.0092$)
- High-speed layout design and optimization
 - Supression of impedance discontinuities: Differential vias, DC-blocking caps
 - Intra-pair skew compensation to reduce differential to common mode conversion
 - Post-layout simulations using IBIS-AMI models
 - Mixed-mode S-parameters computation for crosstalk studies: FEXT and NEXT
- IR drops on the more demanding power planes
 - VCCINT (0.95V) drains up to 15A

F. Carrió - Topical Workshop on Electronics for Particle Physics 2019

ATCA Carrier Base Board

- ATCA cutaway carrier
- Zone 1: Power distribution to CPMs and TDAQ-I - Max power of 400 W
- Zone 2: GbE + XAUI 10G
 - Base & Fabric: Communication with rest of the ecosystem
- Zone 3: Communication between CPMs and TDAQ-I / FELIX
- Three on-board mezzanines
 - CERN IPMC board
 - Power and sensor management
 - TileCoM Zynq-based board
 - FPGA remote programming
 - Interface with DCS system
 - 16 GbE port switch SODIMM
 - CPMs GbE communication

Plans for upcoming years

- First CPM prototypes being manufactured now
- Preproduction (25%) from Q3 2020 to Q1 2022
 - 8 ATCA carriers, 32 CPMs
- Final production (75%) from Q2 2022 to Q3 2023
 - 24 ATCA carriers, 96 CPMs

128 CPMs in total

- New conditions imposed by HL-LHC requires the complete redesign of the TileCal on-detector and off-detector electronics
- Tile PreProcessor boards for the Phase II Upgrade under development
 - 32 x (ATCA carrier + 4 Compact Processing Modules) to read out TileCal
 - Total bandwidth of 40 Tbps between on-detector and off-detector
- Fully operational PreProcessor Demonstrator has been qualified
 - Capable of operate one TileCal module \rightarrow $^{1\!\!/_2}$ number of channels w.r.t. one CPM
 - Extensively tested in several test beam campaigns between 2015 and 2018
- First CPM prototypes are under production now
 - Largely based on PPr Demonstrator
 - 8 Firefly optical modules, Kintex UltraScale, Artix 7 \rightarrow single AMC form factor
 - Many signal and power integrity studies done during layout design
 - Mechanical boards to plan the fiber routing critical step
 - Preproduction in 2020, final production in 2022 and installation in 2024

BACKUP

- The **Phase II module** is composed of 4 mini-drawers (48 PMTs). Each mini-drawer have 2 independent read out sections **for redundant cell readout**
 - 12 PMTs + 12 front-end boards reading out 6 TileCal cells
 - 1 × MainBoard: operation and signal digitization of the front-end boards
 - 1 × DaughterBoard: data high-speed link with the off-detector electronics
 - 1 × High Voltage regulation board
 - 1 × Low Voltage Power Supply (LVPS): low voltage power distribution

High-speed link with the back-end electronics

- Data collection and transmission
- Clock and command distribution
- Data link redundancy
- Daughterboard version 5
 - 2 × GigaBit Transceiver (GBT) chips
 - 2 × Xilinx UltraScale+ FPGAs
 - 4 × SFP modules \rightarrow ~40 Gbps
- TID tests with ~ 9 MeV electron beam
- SEE and SEL tests done with 58 MeV and 226 MeV proton beam
 - Soft error rate is low \rightarrow Triple redundancy
 - No destructive effects observed

DaughterBoard v5

- Front-end boards: FENICS cards
 - PMT pulse shaping
 - Shaper with bi-gain output: 1×LG + 1×HG
 - High precision slow integrator
 - Design based on current 3in1 cards
 - Improved noise and linearity
 - Improved calibration circuitry
- MainBoard
 - Digitize analog signals coming from 12 FEBs
 - Routes the digitized data from the ADCs to the DaughterBoards
 - Digital control of the FEBs
 - HG and LG, 12-bit samples
 @40 Msps
 - TID, NIEL, SEE tests performed

69 cm

TilePPr Demonstrator - overview

- First prototypes delivered at the end of 2014
- Extensively used in test beams and labs
- Power consumption below 60 W

F. Carrió - Topical Workshop on Electronics for Particle Physics 2019

- Based on the occcupied resources of the PPr Demonstrator
 - ½ channels of a Compact Processing Module

	PPr Demonstrator Virtex 7 485T		CPM – proto KU085	CPM – <i>Baseline</i> KU115		
Slice Logic Utilization	Used	Available	Utilization	Available	Available	
Number of Slice Registers	152,696	607,200	25%	995,040	1,326,720	
Number of Slice LUTs	154,811	303,600	50%	497,520	663,360	
Number of RAMB36E1	107	1,030	10%	1,620	2,160	
Number of RAMB18E1	741	2,060	35%	3,240	4,320	
Number of MMCMs	4	14	28%	22	24	
Number of PLLs	2	14	14%	22	24	
Number of Transceivers	19 + 4	56	41%	48	48	
DSP slices	1152	2,800	41%	4,100	5,520	
Energy and time reconstruction:						

Logic resources < 1%

Mainly DSP resources

state machines, de/multiplexer, encoder/decoders, etc

RAM memory:

Pipeline buffers and monitoring Current fw is 12.8 us

Clocking circuitry

Transceivers: DaughterBoard, TDAQ-I, FELIX, Ethernet

F. Carrió - Topical Workshop on Electronics for Particle Physics 2019

Compact, replaceable and upgradeable solution

- TileCoM Computer on Module
 - Embedded Linux PetaLinux distribution
 - Remote programming, DCS monitoring, clock generation for standalone tests
 - Xilinx Zynq UltraScale+ XCZU2CG + 512 MB DDR4
 - 10 layers DDR3 form factor (67.6 mm x **40.00** mm)
- Ethernet switch module
 - Unmanaged Ethernet Switch chip Broadcom BCM5396
 - 16 GbE connection between CPMs and TDAQ-I
 - 6 layers DDR3 form factor (67.6 mm x 30.00 mm)
- IPMC mezzanine board (CERN)
 - Microsemi A2F200, DIMM-DDR3 VLP form factor
 - Hot swap, sensor monitoring, power management

Prelayout of the TileCoM

GbE switch

IPMC mezzanine board