**TWEPP 2019 Topical Workshop on Electronics for Particle Physics** 

#### Highly-linear FPGA-based Data Acquisition System for Multi-channel SiPM Readout

Todd Townsend, Yuxuan Tang, Jinghong Chen

Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204

September 5, 2019

Integrated Circuits and Microsystems Research Lab

# Outline

- Motivation
- SiPM FPGA DAQ Architecture
- Detection
- Pulse Energy
- TDC
- Results
- Summary

### Motivation

- Maximize input channels per FPGA for timeof-flight with energy measurement
- Utilize 28nm Kintex 7 FPGA for best price/performance/watt
- Simplify SiPM pulse energy measurement with interface to new UH designed detector
- Increased linearity

#### SiPM FPGA-based DAQ



#### Detection



- Selection of the scintillation material determines the gain and decay rate which dictates the full width half maximum TOF possible\*
- Photomultipliers can be either a photomultiplying tube (PMT) or silicon based (SiPM)
- As resolution requirements increase, SiPMs are chosen due to their advantage with:
  - Reduced decay rate,
  - smaller size,
  - non-magnetic structure allowing for MRI PET gantries,
  - and equivalent gain and noise compared to PMT.
- High Z mirrored input for multi-path delivery
- High Pass filtered input with adjustable minimum Energy threshold



#### Measurement



- Advantages
  - Stable over temperature
- Disadvantages
  - Costly implementation
  - Requires high-speed ADC
  - One ADC per channel needed
  - Higher FPGA pin and fabric requirement

#### Pre-sample Analog Integration



- Advantages
  - Cheaper implementation
  - Slow-speed ADC
  - One ADC per 8 or 16 channels
  - Lower FPGA pin and fabric requirement
  - Disadvantages
    - Not as stable over temperature
  - Chosen for implementation

### TDC TOF & TOT Measurement

• Time-to-Digital Converter (TDC) Methods





Digital "Pure" TDL



### **TDC Previous Works**

#### 12 FPGA-based reference designs

| Ref. | Method               | Year | RMS        | Tech. | Integral Non-    | Diff. Non-       |
|------|----------------------|------|------------|-------|------------------|------------------|
|      |                      |      | Resolution |       | Linearity (INL)  | Linearity (DNL)  |
| [19] | Vernier TDL          | 1997 | 200ps      | 650nm | <200ps           | -94ps, +88ps     |
| [20] | Vernier TDL          | 1997 | 129ps      | 650nm | 4бps             | -144ps, +214ps   |
| [22] | Multi-phase clocks   | 2012 | 625ps      | 65nm  | 31.25ps          | 31.25ps          |
| [23] | Pure Carry TDL       | -    | 50ps       | 90nm  | -                | 300ps            |
| [15] | Pure Carry TDL       | 2009 | 17ps       | 65nm  | -51ps, +43.86    | -17ps, +60.35ps  |
| [12] | Pure Carry TDL       | 2013 | 15ps       | 65nm  | ±60ps            | -15ps, +45ps     |
| [21] | Multichain averaging | 2015 | 4.2ps      | 40nm  | -28.7ps, +18.2ps | -2.9ps, +11.72ps |
| [24] | Matrix of counters   | 2017 | 7.4ps      | 65nm  | 11.6ps           | 5.5ps            |
| [25] | Wave union           | 2008 | 10ps       | 90nm  | -                | -                |
| [26] | Wave union           | 2013 | 7.7ps      | 65nm  | -                | -                |
| [27] | Ring oscillators     | 2008 | 40ps       | 90nm  | <40ps            | <40ps            |
| [28] | Ring oscillators     | 2017 | 50ps       | 350nm | ±65ps            | ±35.75ps         |

All derived from "Pure Carry TDL"

# **TDC Delay Lines**

Pure Carry Tapped Delay Line

- Simplest implementation
- Lowest resources needed
- Better linearity vs. Vernier
- Core of most methods



Xilinx SLICEL with CARRY4 and first stage registers

### **TDC Initial Design**



## **TDC Initial Results**

#### Initial Design Issues

- Large quantity of zero length bins at front and throughout
- Very large bin at clock region crossing
- Significant nonlinearity

#### Causes

- Delay chain crosses fabric clock region boundary
- Detector latch enable delayed
- Encoder result latched too soon
- Clock skew



### **Bubble Error**

- The thermometer-to-binary encoder must handle bubble error.
- Review of the actual amount of unwanted '0's sandwiched between '1's revealed only one error
- "The Highest '1' (native)" encoder was chosen with modification for bin realignment



#### **Bubble Error Causes**

- Clock skew causes later stage delay taps to be latched before the previous stage
- Notice how the clock is fed to registers 3, 2, and 4 before 1
- Simulation confirms this in predicted bin size
- Clock skew only becomes an issue with newer <40nm FPGAs</li>
- Slower FPGA carry delays are >> than clock skew
- The KC705 eval board utilizes a 28nm -2 speed grade Kintex 7 with an average delay of 11ps





#### **Bubble Error Solution**

- Bin realignment helps to correct the effects of clock skew
- Analysis of Code Density testing and review of the thermometer code latched determines which bins must be realigned



Results after bin realignment

### **TDC Pulse Detection**

- Several iterations attempted
- Final selection feeds the pulse into the clock input of Flip-Flop and delays the pulse\_out until the latch enable "Valid" signal has provided enough setup time for the latch stage
- This reduces the front bins / from missing hits and / "1" allows for increased clock Pulse speed



Final Detector Design

## **Multichain Averaging**

- Multichain averaging is utilized for linearity improvement
- Results were ploted with 1, 2 and 4 parallel chains





### Final Design



# **TDC Linearity (Pre-Calibration)**

#### **Multichain Averaging**



| Method | DNL (LSB) | DNL (ps)   | INL (LSB)  | INL (ps)      |
|--------|-----------|------------|------------|---------------|
| 1Chain | -1, +5    | -11, +55   | -9.4, +4.5 | -103.4, +49.5 |
| 2Chain | -1, +2.2  | -11, +22   | -5.6, +3.9 | -61.6, +42.9  |
| 4Chain | -1, +1.4  | -11, +15.4 | -4.2, +2.9 | -46.2, +31.9  |

## TDC Linearity (Post-Calibration)

#### 4 Chain Averaging Results with Calibration



#### **TDC Resolution**

#### 1 and 4 Chain RMS Results



#### **TDC Results**

| Ref. | Method                 | Year | RMS        | Tech. | Integral Non-    | Diff. Non-       |
|------|------------------------|------|------------|-------|------------------|------------------|
|      |                        |      | Resolution |       | Linearity (INL)  | Linearity (DNL)  |
|      | This Work              | 2019 | 15ps       | 28nm  | -4.65ps, +9.59ps | 3.18ps, +3.46ps  |
|      | (Multichain averaging) |      |            |       |                  |                  |
| [19] | Vernier TDL            | 1997 | 200ps      | 650nm | <200ps           | -94ps, +88ps     |
| [20] | Vernier TDL            | 1997 | 129ps      | 650nm | 46ps             | -144ps, +214ps   |
| [22] | Multi-phase clocks     | 2012 | 625ps      | 65nm  | 31.25ps          | 31.25ps          |
| [23] | Pure Carry TDL         | -    | 50ps       | 90nm  | -                | 300ps            |
| [15] | Pure Carry TDL         | 2009 | 17ps       | 65nm  | -51ps, +43.86    | -17ps, +60.35ps  |
| [12] | Pure Carry TDL         | 2013 | 15ps       | 65nm  | ±60ps            | -15ps, +45ps     |
| [21] | Multichain averaging   | 2015 | 4.2ps      | 40nm  | -28.7ps, +18.2ps | -2.9ps, +11.72ps |
| [24] | Matrix of counters     | 2017 | 7.4ps      | 65nm  | 11.6ps           | 5.5ps            |
| [25] | Wave union             | 2008 | 10ps       | 90nm  | -                | -                |
| [26] | Wave union             | 2013 | 7.7ps      | 65nm  | -                | -                |
| [27] | Ring oscillators       | 2008 | 40ps       | 90nm  | <40ps            | <40ps            |
| [28] | Ring oscillators       | 2017 | 50ps       | 350nm | ±65ps            | ±35.75ps         |

#### Best reported DNL and INL

## Summary

- Analysis of challenges in FPGA TDC design
  - Nonlinearity, bubble error, bin realignment, pulse detection, clock region crossing, proper latching, metastability, calibration
- Contributed best-in-class multichain averaging TDC

The Const

- 32 TDC Channel, 15ps, best linearity



Fast Detector



Multichain Averaging



#### Thank you for your attention!

Q & A