Methods for Clock Signal Characterization using FPGA Peripherals

Stefan Biereigel1,2,3, Szymon Kulis1, Paulo Moreira1, Jeffrey Prinzie2, Paul Leroux2, Alexander Kölpin3

Motivation

Characterization of clock signal parameters is typically done using off-the-shelf measurement equipment. For specialized ASIC testing applications, which demand multi-channel measurements while minimizing measurement time or have a need for real-time dynamic measurements, two alternative measurement schemes were developed.

Static Signal Characterization Method

- FPGA PLL multiplies and phase-shifts DUT reference clock
- Clock signal under measurement is sampled by synchronous delay line
- Accumulators digitize probability of observing clock signal as 0 or 1
- Repeated for multiple sampling clock phases: Equivalent Time Sampling

![Figure 1: Architecture for Static Signal Characterization](image1)

- Offline processing of reconstructed time series
- Estimation of time offset and jitter for each clock edge
- Calculation of signal frequency, phase (skew), duty cycle and clock jitter
- Picosecond-level measurement resolution
- Uncalibrated edge time estimation error below 62 ps on Xilinx Virtex 7
- Uncalibrated rms jitter estimation error below 20%
- Calibration of PLL phase step size can be used to improve accuracy

![Figure 2: Clock Skew Estimation Error](image2)

Dynamic Signal Characterization Method

- Radiation effects in clock synthesis ASICs can produce phase transients
- Direct triggering on phase not possible with off-the-shelf test equipment
- High-speed data receivers in modern FPGAs allow bypassing CDR
- Direct sampling of clock signals with multiplied reference clock possible
-Deserializer operates at 10 Gbit/s: 100 ps TDC resolution
- Parallel data words presented to FPGA fabric at low clock speed
- Triggering and data acquisition implemented in generic FPGA fabric

![Figure 3: Architecture for Dynamic Signal Characterization](image3)

- Implemented using Xilinx Virtex 7 FPGA & GTX receivers @ 10.24 Gbit/s
- Phase detection and triggering implemented as VHDL core
- Dead-time free triggering on 100 ps phase transients / glitches
- TDC INL better than 52 ps, DNL below 15 ps

![Figure 4: Captured Example Phase Transient](image4)

Summary

- Two FPGA-based methods for clock characterization presented
- Both methods implemented and characterized for performance
- Can eliminate dependency on dedicated measurement equipment
- Flexible architecture allowing multi-channel measurement systems
- Successful application in test campaigns and ASIC production testing
- Performance expected to improve with future FPGA generations

Author email: stefan.biereigel@cern.ch