

The Engineering, Production and Quality Assurance of the Inner Barrel Staves for the Upgrade of the ALICE Inner Tracking System.

Antoine JUNIQUE (CERN)

on behalf of the ALICE Collaboration

06.09.2019

TWEPP 2019

- ALICE Inner Tracking System layout
- Manufacturing of:
 - Inner Barrel Flex Printed Circuit
 - Hybrid Integrate Circuit (HIC)
 - Stave
- Challenges
- Conclusion

Detector layout

Rmax =400 mm

Motivations and goals

- Close to Interaction point
- Small pixel (29 x 27 μm)
- Spatial resolution:~5 µm
- Low material budget : 0.38 %/X0
- Readout collision up to 100 kHz
 Outer Barrel Pb-Pb and 400 kHz pp

10 m² active silicon area

~ 24000 MAPS(Monolithic Active Pixel Sensor chips)

12.5 G-pixels

Beam pipe

Inner Barrel

147 cm

Inner Barrel (IB) layout

IB ITS upgrade in numbers (main components)

- IB staves: 48 (9 chips per Stave)
- Pixel sensor chip (ALPIDE 50 µm thick): 432

ALICE

Inner Barrel Flex Printed Circuit manufacturing

Test coupons

Main production steps

The inner barrel FPCs are mostly manufactured at CERN PCB workshop.

- 8 batches of 24 IB FPCs, 192 FPCs in total
- 8 batches delivered (85 % yield)
 - 35 NOK, related to manufacture issues
 - 8 NOK, related to damages during handling or SMD mounting

Inner Barrel Flex Printed Circuit manufacturing

Alignment table

Probe card

ALICIA machine

ALICE

Custom developed assembly and test machine for the ALICE ITS: This machine was designed and produced, with CERN specifications, by the IBS company based at Eindhoven, Netherlands.

- Electrical test with a probe card
- Automated pick and place of pixel chips (50 µm, 100 µm thick)
- Automated visual inspection and control of the chip
- Alignment of 1x9 or 2x7 pixel chips for HIC assembly (<5 µm alignment precision)

6 ALICIA machines were produced and installed in the ALICE ITS production centers.

Manufacturing of Inner Barrel Hybrid Integrated Circuit

ALICE

Components preparation

- Chips: visual inspection, selected "GOLD" (less than 50 dead pixels over 500 000) from electrical test.
- FPC: electrical characterisation, metrology, cleaning, visual inspection
- Gluing mask : visual inspection and cleaning

Wire bonding through via

Signal connection

TWEPP 6-Sep-2019

IB HIC assembly procedure

After chip gluing

TWEPP 6-Sep-2019

IB STAVE assembly procedure

Challenges

- Gluing mask alignment and glue seepage

Solutions:

- Improvement of the glue mask design
 - Hole diameter 600 µm
 - Thickness 90 µm
- Using vacuum jig to align the glue mask
- Glue mask manufacturing improvement
- Start polymerization of the glue before applying it

- FPC dimensional stability

Solutions:

- Thermal treatment to stabilize the polyimide foil
- Redesign the FPC layout with an expansion coefficient
- Assembling the passive components by hand to prevent thermal stress.

- Prevent hard particle contamination

- Solutions:
 - Visual inspection steps added
 - Cleaning procedure improvement
 - Glue mask manufacturing improvement
 - Glue replacement, without filler particles
 - Glue layer thickness optimization

Piece of aluminum identified after gluing mask manufacturing with drilling machine

Inner Barrel staves

- 130 HICs were constructed
- 27 HICs were discarded mostly due to electrical problems
- 96 staves were constructed
- 1 Inner Barrel was assembled with 48 Staves

- ALICE ITS Inner Barrel was constructed
 - ✓ With low material, 0.38 %/X0
 - $\checkmark\,$ Conductive layer from aluminum
 - $\checkmark\,$ Signal lines routed without vias
 - $\checkmark\,$ Wire bonding through FPC
- Lessons learned
 - ✓ Intensive quality assurance
 - ✓ Importance of the metrology
 - ✓ Electrical tests
 - $\checkmark\,$ Cross section analysis
 - $\checkmark\,$ Prevention of contamination
 - $\checkmark\,$ Long training and specialize team
- Commissioning started and will be completed by April 2020, installation in the cavern in summer 2020

Inner half Barrel

Thank you for your attention!

Backup slides

Stave integration: **OB layers**

ALICE ITS Upgrade LS2

Half-barrel completed

Stave integration: Layers commissioning

• Layer 6 and Layer 2 being commissioned with final electronics and cooling

Forum on tracking mechanics 2019 | Massimo Angeletti

