“Increased radiation tolerance of CMOS sensors with small collection electrodes through accelerated charge collection”
a.k.a.
“first results from the MiniMALTA demonstrator”

Ignacio Asensi, Ivan Berdalovic, Daniela Bortoletto, Ivan Caicedo Sierra, Roberto Cardella, Florian Dachs, Valerio Dao, Leyre Flores Sanz de Acedo, Tomas Hemperek, Toko Hirono, Bojan Hiti, Magdalena Munker, Heinz Pernegger, Francesco Piro, Petra Riedler, Enrico Junior Schioppa, Abhishek Sharma, Lluis Simon Argemi, Walter Snoeys, Carlos Solans, Tianyang Wang, Norbert Wermes, Kaan Yuksel Oyulmaz

Valerio Dao
CERN

TWEPP2019, Santiago de Compostela
03-09-2019
CMOS detectors

- a quick recap: the MALTA chip
 - design
 - results

- learning from the results: the Mini-MALTA prototype
 - design
 - results
(one of) the next challenges for pixel detectors

- Upcoming colliders (HL-LHC, FCCह) will run at very high instantaneous luminosities:
 - $8-30 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
 - significant amount of pileup (200-1000) interactions per bunch crossing

- Large hit rate: 200 MHz/cm2
 - need small pixel to separate individual particles

- Very large radiation dose:
 - HL-LHC pixel detector: $2 \times 10^{16} - 1 \times 10^{15} \text{ n}_{\text{eq}}/\text{cm}^2 \text{ NIEL}$
 - current LHC detectors needs to be replaced at the end of Run3
Hybrid silicon detectors:
- most popular technology in current large scale detectors
- well known technology with proven radiation hard properties
- reasonably expensive and custom process

Monolithic CMOS:
- industrial-like production: suited for large area detector
- small segmentation to maintain low occupancy in high particle flux
- potential for low material budget and low power detector
- still in R&D phase (in particular for what concern radiation hardness)
✦ Successfully implemented for the ALICE ITS
✦ Small collection electrode —> small input capacitance
✦ Small depletion depth: 25-30 µm
✦ modified process with additional low dose n-type implant:
 ✦ achieve full lateral depletion
 ✦ improve radiation hardness
✦ typical bias voltage: 6 - 20 V (substrate), 6V (pwell)
- 22 x 20 mm² full size demonstrator
- **512 x 512 pixels**
- 8 sectors with different pixel flavours
- **Fully clock-less matrix architecture**
- Charge information from time-walk
- 10 mW/cm² digital power

- Pixel size: 36.4 x 36.4 µm²
- 2-3 µm² collection electrode:
 - *small input capacitance: few fF*
- 3.5-4 µm spacing to electronics:
 - *low cross talk*
- 1 µW/pixel analog power:
 - **70 mW/cm² digital power**
MALTA: front end

Operating principle derived from ALPIDE front end
D. Kim et al. DOI 10.1088/1748-0221/11/02/C02042

Charge measurement from time difference between bunch crossing time and leading edge of hit signal (no ToT)

timewalk <25 ns for Q>300 el

Typical performance (before irradiation):

- $th \sim 250 \text{ el}$, $RMS \sim 35 \text{ el}$, $ENC \sim 7 \text{ el}$
Novel asynchronous readout architecture for high hit rate capability with 40 bit parallel data bus for data streaming:

- Groups of 2x8 pixels with pattern assignment to reduce data size from clusters
- Front-end discriminator output is processed by a double-column digital logic
- Pulse width adjustable between 0.5 ns and 2 ns
- Data transmitted asynchronously over high speed bus to end of column

At the periphery, arbitration and merging resolves timing conflicts of simultaneous signals [currently disabled]:

- Timing information stored in dedicated bits
- Output signals transmitted by 5 Gbps LVDS driver
- one MALTA word consist of 38 bits

Custom chip readout implemented in Virtex VC707:

- asynchronous oversample of parallel 38 lines
- measuring hit arrival time with 400ps precision
First submission [*]: delivered in Jan 2018
- pixel readout and pixel pulsing functional
- slow control not fully functional -> partial masking only on double column level, no individual pixels
- hit merger in the periphery disabled due to too high noise activity can cause data collisions at very hit rate

Second submission (MLVLC) [*]: delivered in Jun 2018
- MLVLC = Metal Last Vias Last Change
- Improve connections to digital power in the slow control block
- Improve PWELL connections in the matrix
- Chip behavior remained similar to first submission

Third submission (MALTAC): delivered in Febr 2019
- fully functional Slow Control capabilities at reduced digital voltage

[*] chips irradiated up to $1e15 \text{ n}_{eq}/cm^2$
Analog signal properties

Threshold scan measurements

Test beam campaigns at SPS:
- April-October 2018
- MIMOSA-based telescope: 2 µm resolution
- both unirradiated and samples irradiated up to 1e15 n_{eq}/cm²
- preliminary results presented last year by B. Hiti
- a quick recap in the next slides
Test beam results

high threshold:
- inefficiency for low signals (charge sharing)
- low noise

low threshold:
- higher sensitivity for low signal
- significantly larger noise
- lack of pixel masking produce inefficiency due to hit merging

Unirradiated
(W6R6,)

93.6 % — 97.1 % — 96.2 %

Irradiated
5x10^{14} n_{eq}/cm^2
(W6R21,)

55.1 % — 71.1 % —

Decreasing threshold, from ~600 e⁻ to ~250(unirr)/350(irr) e⁻

Clear inefficiency seen after irradiation

Dao Valerio

TWEPP 2019
In pixel efficiency: overlay of many pixel groups

Unirradiated (W6R6, S3)

Irradiated \(5\times 10^{14} \text{n}_{\text{eq}}/\text{cm}^2\) (W6R21, S3)

Decreasing threshold, from \(\sim 600\ e^+\) to \(\sim 250\text{(unirr)/350(irr)}\ e^+\)

Couldn’t reach lower threshold

Inefficiency are mainly originating at the corner of the chip
Test beam results

Inefficiency are mainly originating at the corner of the chip

✦ Efficiency after irradiation drops more in the corners
✦ Center of the pixel is affected by merging at lower thresholds
✦ Corners of the pixel improve with lower threshold
✦ no strong dependence on substrate voltage in range 6-15 V
Effect of the p-well structures

- Inefficiency structures inside the pixel correlated with deep PWELL distribution
- Inspired modifications discussed with the foundry and effort on TCAD simulation
- Proposed modification of the PWELL structure at the chip boundary to water the field configuration

Sector 2
Max deep p-well

Sector 3
Med deep p-well

Modified process:

Modified process with additional p-implant:

Modified process with gap in n-layer:
- 5 x 1.7 mm² demonstrator
- 64 x 16 pixels with 36.4 µm pitch
- based on the MALTA pixel front-end with key improvements
- 8 sectors with different analogue front-end design, reset mechanism and sensor implant process
- different SlowControl implementation
- periphery data synchronization using a custom RAM memory
- single serial data stream: 40Mbs or 1.2 Gpbs with 8b10b encoding

Mini-MALTA wire-bonded on a carrier board
Increased size of transistors to reduce RTS noise:

- M6: x2 larger
- M3: 20% larger
Process modification inspired by TCAD simulation

Before irradiation:
- Modified process
- Modified process with additional p-implant
- Modified process with gap in n-layer

Total current [A]:
- Particle incident at 1ns - 6 V

Particles:
- M. Munker, Pixel 2018

After irradiation:
- Modified process
- Modified process with additional p-implant
- Modified process with gap in n-layer

Total current [A]:
- Particle incident at 1ns - 6 V
- Irradiation dose of 10^{10} neq/cm²

Modified Process:
- NWELL
- PWELL
- DEEP PWELL
- LOW DOSE N-TYPE IMPLANT
- DEPLETED ZONE
- DEPLETION BOUNDARY

Standards:
- S0
- S1
- S2
- S3
- S4
- S5
- S6
- S7

Standard, PMOS reset:
- extra-deep p-well
- n- gap
MiniMALTA: threshold scan

✦ (for the same configuration) enlarged Nmos front end shows *significantly lower threshold and smaller pixel-by-pixel dispersion*

✦ enlarged transistors front end has *smaller average ENC and significantly smaller ENC tails*

✦ noise ~double after irradiation

More information on Poster from Lluis Simon Argemi
intermezzo: MALTA telescope

- testbeam in ELSA: 2.5 GeV electrons

new beam telescope made entirely of MALTA(C) planes:
- 2 arms (3 planes each) + 1 plane inside the cold box
- flexible trigger schema (up to 3 planes coincidence)
- precise region of interest capability (also in trigger)
- high rate capability [up to few kHz] with low per-event occupancy (~1 hit)
- achieving 14 µm track-hit resolution using only 3 tracking planes and General Broken Line (GBL) algorithm in Proteus
- similar performance as MIMOSA telescope in DESY
Efficiency map in Mini-MALTA

(99.7 ± 0.1)%
(99.7 ± 0.1)%
(99.6 ± 0.1)%
(99.7 ± 0.1)%
(99.1 ± 0.1)%
(98.9 ± 0.1)%
(97.9 ± 0.1)%

very high and uniform efficiency before irradiation
visible improvement in efficiency from modifications:

✧ ~13% improvement due to new transistor
✧ ~6% improvement from process modification: similar improvement from deep p-well and n-gap
Efficiency map in Mini-MALTA: summary

✧ for 1×10^{15} n_{eq}/cm^2:
 ✧ efficiency stably above 97% for threshold below 200 eI in new sensor modification with enlarged transistors

✧ for 2×10^{15} n_{eq}/cm^2:
 ✧ monotonic effect of efficiency with threshold
 ✧ similar improvement pattern across sectors
 ✧ reaching an efficiency >90%

✧ no strong dependence on substrate voltage in range 6-15 V
... while waiting for SPS restart ... test beam at Diamond Light Source facility (UK):

- 8 keV x-ray beam: close to MIP energy deposition in the chip
- scanning position in 1-2 µm steps (corresponding to externally measured beam spot size)
- ... publication coming soon ...
Mini-MALTA is a prototype designed to improve rad.
hardness of the MALTA chip:

- modification of the sensors and improved transistors
 in the front end lead to **>97% efficiency after 1e15
 neq/cm²**
- publication under preparation

Looking ahead (full size chips):

- **Fourth submission**: chip delivered and assembled, testing started yesterday(!)
 - same slow control implementation as MaltaC
 - different substrate type for the wafer. *From TJ standard to Czochralski type*
 - should increase the size of the depletion region (more signal)

- Single Event Upset testing campaign in November

- submission of new chip in December 2019
 - half size MALTA with improved front-end transistors
 - MonoPix_V2: including 3 bits for pixel threshold tuning
Acknowledgement

- The measurements leading to these results have been performed at the TestBeam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

- Measurements leading to these results have been performed at the E3 beam-line at the electron accelerator ELSA operated by the university of Bonn in Nordhrein-Westfalen, Germany.

- This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.(IJS, Ljubljana, Slovenia)

- Dr. Ben Phoenix, Prof. David Parker and the operators at the MC40 cyclotron in Birmingham (UK).

BackUp
Asynchronous readout

- Propagation delay of asynchronous signals through double column bus up to 8 ns

- Total delay for half a column = pulse delay / 2 + signal delay / 2 = **12 ns** (-1.8 V p-well bias)
• Read-out on Xilinx 7-series VC707
• Implemented asynchronous oversampling of the data
 ■ 2 copies of the data (0.45)
 ■ 2 clock buffers (0.90)
 ■ 2 samplings per clock (0.180)
 ■ 8 samples per signal
 ■ 320 MHz clock domain
 ■ 4 GHz effective sampling
 ■ 3 to 4 samples per pulse

Xilinx application note XAPP523
Cluster size plots

Unirradiated (W6R6, S4)

Decreasing threshold, from ~600 e\(^{-}\) to ~250(unirr)/350(irr) e\(^{-}\)

Irradiated 5x10\(^{14}\) n\(_{eq}\)/cm\(^{2}\) (W6R21, S4)

Couldn't reach lower threshold
Efficiency: versus sub start voltage

W1R3 (2×10^{15} neq/cm^2)
- Large trans.
- Large trans. + extra p-well
- Large trans. + n-gap
- Std trans.
- Std trans. + extra p-well
- Std trans. + n-gap

Thr. = 160e
Thr. = 290e

W2R1 (1×10^{15} neq/cm^2)
- Large trans.
- Large trans. + extra p-well
- Large trans. + n-gap
- Std trans.
- Std trans. + extra p-well
- Std trans. + n-gap

Thr. = 155e
Thr. = 300e

W5R3 (2×10^{15} neq/cm^2)
- Large trans.
- Large trans. + extra p-well
- Large trans. + n-gap
- Std trans.
- Std trans. + extra p-well
- Std trans. + n-gap

Thr. = 120e
Thr. = 225e
Efficiency: $2 \times 10^{15} \text{ neq/cm}^2$

W5R3@SUB=10V ($2 \times 10^{15} \text{ neq/cm}^2$)

- Thr. = 120e
- Thr. = 230e

Thr. = 150e
Thr. = 130e

Thr. = 280e
Thr. = 240e