## Focal Plane Processing in Standard CMOS Technologies

Photodiode Modeling and Characterization CMOS Vision Sensors Micro-Light Energy Harvesting

Topical Workshop on Electronics for Particle Physics, TWEPP-2019 Santiago de Compostela, Spain, 2-6 Sept. 2019

Paula López Martínez

CiTIUS, Universidade de Santiago de Compostela (Spain)





Centro Singular de Investigación

en **Tecnoloxías Intelixentes** 

- Vision Analog to Information Conversion (AIC) by means of focal plane processing in standard CMOS technologies.
- **Mission -** Change of paradigm from *big data* to *smart data*.

Development of new solutions extracting *information* from the environment *rather than* simply massive amounts of raw *data*, efficiently *reducing bandwidth and power* consumption. The use of standard CMOS technologies favors the development of *low cost* solutions.

Vertical approach: from sensing to processing to energy autonomy



## Photodiode Modeling and Characterization



- Goal Determination of the practical scaling limit of photodiodes in standard CMOS technologies
  - Modeling and experimental characterization under point source illumination → sub-pixel level study
  - ▷ Modeling and experimental characterization under uniform illumination



## **Point Source Illumination**



- Goal Determination of the relative importance of the lateral collection with respect to the active area collection.
  - Development of a 2D, compact, general and scalable model for P-N+<sup>[1,2]</sup> and P-Nwell<sup>[3]</sup> PDs
  - Experimental validation: square P-N+ junctions in AMS 180 nm and UMC 65 nm standard CMOS technologies <sup>[4]</sup>
  - ▷ Verilog-AMS implementation <sup>[5]</sup>

[1] Solid-State Electronics, vol. 73, pp. 15–20, Jul. 2012
[2] IEEE Transactions on electron devices, VOL. 60, NO. 10, pp. 3459-3464, 2013
[3] IEEE Transactions on electron devices, VOL. 62, NO. 2, pp. 580-586, 2015
[4] Semicond. Sci. Technol., vol. 28, no. 4, pp. 045011–045017, 2013
[5] Microelectronics Journal 43 (2012) 980–984



## Uniform illumination

#### Fabricated structures:





## Uniform illumination

#### Experimental results

| x (1100)          | $x_{\rm s}$ (µm) |       |          |       |       |             |  |  |
|-------------------|------------------|-------|----------|-------|-------|-------------|--|--|
| $x_{\rm ph}$ (µm) | 0.355            | 0.605 | 0.855    | 1.105 | 1.355 | 1.605       |  |  |
| 0.56              | 68               | 95    | 102      | 100   | 89    | 52          |  |  |
| 1.06              | 172              | 235   | 244      | 247   | 228   | 137         |  |  |
| 1.56              | 304              | 419   | 435      | 437   | 405   | <del></del> |  |  |
| 2.06              | 468              | 635   | 663      | 664   | 605   | -           |  |  |
| 2.56              | 505              | 662   | 664      | 683   | 635   |             |  |  |
| 3.06              | 769              | 736   | $\simeq$ | 2     | 822   | 2           |  |  |

Total photocurrent (nA) in UMC 65 nm standard technology.

## Lateral component dominates the total photocurrent!!

| $\mathbf{x} \in (\mathbf{u}\mathbf{m})$ | $x_{\rm s}$ (µm) |       |       |       |             |       |  |  |
|-----------------------------------------|------------------|-------|-------|-------|-------------|-------|--|--|
| Aph (µIII)                              | 0.355            | 0.605 | 0.855 | 1.105 | 1.355       | 1.605 |  |  |
| 0.56                                    | 64               | 88    | 89    | 87    | 81          | 48    |  |  |
| 1.06                                    | 156              | 221   | 224   | 220   | 179         | 115   |  |  |
| 1.56                                    | 275              | 387   | 390   | 391   | 354         |       |  |  |
| 2.06                                    | 413              | 570   | 578   | 560   | 515         | -     |  |  |
| 2.56                                    | 411              | 555   | 534   | 537   | 465         | -     |  |  |
| 3.06                                    | 595              | 577   |       | 828   | 3 <u>94</u> | Ξ.    |  |  |

Ci

Lateral photocurrent (nA) in UMC 65 nm standard technology.

## Uniform illumination

2D model:







## **Feature Detectors on CMOS Vision Sensors**

- CMOS vision sensor (CVIS) chips
- Embedded parallel processing close to the sensors
  - Per-column or per-pixel processors (or both of them combined)
    - Advantages
      - Fast and power efficient image analysis
    - Drawbacks
      - Larger pixel pitch with smaller fill-factor than imagers
      - Low resolution

| nage | rs                                          |
|------|---------------------------------------------|
| ĺ    | Cell                                        |
|      | Sensing<br>Analog Processing<br>DAC Biasing |
| L    |                                             |



## **CMOS Vision Sensors: Gaussian pyramid**

- Goal- design of a CMOS Vision Sensor (CVIS) chip for Gaussian pyramid extraction<sup>1</sup>
- Gaussian Pyramid Extraction- first stage of many feature detectors; it provides algorithms with scale invariance
- **Applications-** tracking, object detection, image registration, etc.





[1] IEEE J. of Solid-State Circuits, vol. 52, no. 2, pp. 483-495, 2017

Gaussian pyramid emulates the lost of high spatial frequency components as an object moves away from the camera





Breakdown of SIFT algorithm (@ HD, @30 fps, @ #3375 keypoints)

Ci

Descriptor vector Key point extract Gaussian pyramid US 92%

- Organized in octaves (downscaling the previous one in 1/4x)
- Each octave with 6 images or scales
- $\succ$  A scale is a Gaussian filter with a given sigma level on the incoming image
- 3 octaves with 6 scales each suffice



## **CMOS Vision Sensor for Gaussian Pyramid- chip features**

- 176 x 120 pixels (5 x 5 mm<sup>2</sup>) in standard 180 nm CMOS technology
- 88 x 60 Processing Elements (PE) for close to the sensor and concurrent processing
- Every PE occupies 44 x 44 μm<sup>2</sup>, comprising:
  - $\triangleright$  4 nwell/psub photodiodes of 8 x 8  $\mu$ m<sup>2</sup> in 3T-APS configuration
  - ▷ 4 state and 4 exchange capacitors
  - Circuits for in-PE ADC and CDS
    - Hardware reuse
- Read-out with an 8-bit single-slope ADC





#### **CMOS** Vision Sensor for Gaussian Pyramid- chip features- pixel schematics



| Acquisition      | A/D + Processing |                     |                   |                        |                       |               |                       |  |
|------------------|------------------|---------------------|-------------------|------------------------|-----------------------|---------------|-----------------------|--|
|                  |                  |                     | Octave 0          |                        |                       |               | Octave 2              |  |
|                  | Image            | Scale0              | Scale1            | - Scale5               | Sc0 Sc1 Sc2           | Sc3 Sc4 Sc5   | Sc0 Sc1 Sc2 Sc3 Sc4 S |  |
| Pix0Pix1Pix2Pix3 | Pix0Pix1Pix2Pix3 | Pix0Pix1Pix2Pix3    | Pix0Pix1Pix2Pix3• | •• Pix0 Pix1 Pix2 Pix3 | BPix Pix Pix          | Pix Pix Pix   | Pix Pix Pix Pix F     |  |
| Rst Acq          | Rst A/D conv     | Rst A/D conv        |                   | Merge<br>1/4           | Copy Val.<br>in Comp. | Merge<br>1/16 | Copy Val.<br>in Comp. |  |
|                  | Copy Val.        | Diffusion Copy Val. |                   |                        |                       |               |                       |  |

Ci

#### **Experimental Results**

Test Setup





#### **Experimental Results**

Input image and different snapshots of the on-chip Gaussian pyramid for  $\sigma =$ 1.77 (number of clock cycles of the double-Euler, n= 19),  $\sigma = 2.17$  (n = 29), and  $\sigma = 2.51$  (n = 39)



#### Accuracy assessment:

Sigma : Theoretical (black); Experimental (blue) RMSE- comparison with the Gaussian filter with numerical simulations (Matlab).





Experimental Results: comparison with conventional solutions

| <b>HW Solution</b>                             | Function            | Energy/frame                                                    | Energy/px  | Mpx/s |
|------------------------------------------------|---------------------|-----------------------------------------------------------------|------------|-------|
| This work<br>180 nm CMOS                       | Gaussian<br>Pyramid | 176 x 120 px<br>70 mW @ 8 ms<br>0.56 mJ/frame                   | 26.5 nJ/px | 2.64  |
| Ref. [1] OV9655<br>+ Core-i7                   | Gaussian<br>Pyramid | VGA resolution<br>90 mW @ 30 fps + 35 W @ 136 ms<br>4.8 J/frame | 15.5 uJ/px | 2.26  |
| Ref. [2] OV9655<br>+ Core-2-Duo                | Gaussian<br>Pyramid | VGA resolution<br>90 mW @ 30 fps + 35 W @ 2.1 s<br>73.7 J/frame | 240 uJ/px  | 0.15  |
| Ref. [3] OV9622<br>+ Qualcomm<br>Snapdragon S4 | Gaussian<br>Pyramid | 350 x 256 px<br>30 mW + 4 W @ 98.5 ms<br>0.4 J/frame            | 4.4 uJ/px  | 0.91  |

[1] M. Murphy et al., "Image Feature Extraction for Mobile Processors", IEEE IIWSC 2009
[2] Feng-Cheng Huang et al., "High-Performance SIFT Hardware Accelerator for Real-Time Image Feature Extraction", IEEE TCAS-VT, vol. 22, no. 2, March 2012
[3] G. Wang et al., "Workload Analysis and Efficient OpenCL-based Implementation of SIFT Algorithm on a Smartphone", IEEE GlobalSIP 2013





Hardware-Oriented Pixel Based Adaptive Segmenter (HO-PBAS)- D. García-Lesta et al., "In-Pixel Analog Memories for a Pixel-Based Background Subtraction Algorithm on CMOS Vision Sensors", Int. J. of Circuit Theory and Applications, 2018



Ci

JS

|                          | N      | =8      | N=35   |         |  |
|--------------------------|--------|---------|--------|---------|--|
|                          | PBAS   | HO-PBAS | PBAS   | HO-PBAS |  |
| shadow                   | 0.6864 | 0.7367  | 0.8058 | 0.6249  |  |
| badWeather               | 0.5492 | 0.6987  | 0.7226 | 0.5870  |  |
| PTZ                      | 0.0447 | 0.1220  | 0.0718 | 0.1056  |  |
| dynamicBackground        | 0.1555 | 0.4994  | 0.3839 | 0.5342  |  |
| cameraJitter             | 0.2387 | 0.5585  | 0.4285 | 0.2820  |  |
| thermal                  | 0.6791 | 0.3694  | 0.6703 | 0.2472  |  |
| intermittentObjectMotion | 0.4107 | 0.2793  | 0.4187 | 0.6903  |  |
| turbulence               | 0.0625 | 0.6718  | 0.2112 | 0.6281  |  |
| baseline                 | 0.7512 | 0.7052  | 0.7674 | 0.6281  |  |
| lowFramerate             | 0.3725 | 0.5078  | 0.4941 | 0.4071  |  |
| nightVideos              | 0.2482 | 0.4009  | 0.3417 | 0.2331  |  |
| Overall                  | 0.3863 | 0.4981  | 0.4874 | 0.4275  |  |

Table: F-Measure for PBAS and HO-PBAS with N=8 and N=35 (best results in bold).





[1] D. Lesta et al., International Journal of Circuit Theory and Applications, pp. 1631-1647, 2018.

- Scalable analog core
- Column parallel single-slope 8-bits ADC
- Ncol x 8 bits row buffer that holds a row conversion while the next one is being converted
- Global control

| 3T APS                  | LOCAL | FRAME<br>BUFFER       |  |  |  |
|-------------------------|-------|-----------------------|--|--|--|
| CDS                     | LOGIC | GAUSSIAN<br>DIFFUSION |  |  |  |
| ANALOG MEMORIES         |       |                       |  |  |  |
| Figure: Pixel floorplan |       |                       |  |  |  |



Ci



Ci

ARAM

[1] D. Lesta et al., International Journal of Circuit Theory and Applications, pp. 1631-1647, 2018.

Layouts





Layouts



Ci Figure: Proof of concept 22x56 pixel CMOS vision sensor for background subtraction.

# On-chip Micro Energy Harvesting



## **Micro-Energy Harvesting Chip Features**

| Chip - Energy Harvesting  | Features                                                                                             |
|---------------------------|------------------------------------------------------------------------------------------------------|
| Energy transducer and PMU | Both of them on-chip                                                                                 |
| Technology                | Standard 0.18 um CMOS (UMC)                                                                          |
| Area                      | Photodiode- 1 mm2, PMU- 0.575<br>mm2                                                                 |
| Voltage boosting          | Capacitive DC-DC converter-<br>programable Dickson topology-<br>gain, fly capacitors and frequency   |
| Start-up                  | Cold- no external mechanisms                                                                         |
| Energy span               | 2.38 nW- 10 uW                                                                                       |
| MPPT                      | Open-loop- different working<br>regions (WR) according to the<br>photodiode voltage; V <sub>PD</sub> |







#### MPPT

- Open-loop
- Continuous and bidimensionalchanges in topology, fly capacitors and frequency of the main charge pump (Dickson)
- 5 working regions (WR) according to illumination levels (VPD)
- Maximum current for a given output voltage, in this case 1.1 V
- Voltage levels of WR defined during the design phase with a joint model of photodiode and Dickson charge pump [1]



[1] E. Ferro, P. López, V.M. Brea, D. Cabello. "Dynamic joint model of capacitive charge pumps and on-chip photovoltaic cells for CMOS micro-energy harvesting". Int. J. of Circuit Theory and Applications, vol. 44, no. 10, pp. 1874-1894, 2016.

Ci











Ci

## Proof-of-Concept Chip- Power Breakdown (Simulation)

| WR | Average<br>PMU input<br>power (µW) | PMU<br>output<br>power<br>(μW) | PMU<br>consumed<br>power<br>(µW) | MPPT<br>( %) | Auxiliary<br>oscillator<br>(%) | Auxiliary<br>DC-DC<br>converter<br>(%) | Main<br>oscilla-<br>tor<br>(%) | Main<br>DC-DC<br>converter<br>(%) |
|----|------------------------------------|--------------------------------|----------------------------------|--------------|--------------------------------|----------------------------------------|--------------------------------|-----------------------------------|
| 1  | 0.0048                             | 0.0011                         | 0.0037                           | 0.74         | 1.42                           | 64.88                                  | 1.98                           | 30.22                             |
| 2  | 0.045                              | 0.018                          | 0.027                            | 0.40         | 0.10                           | 11.76                                  | 1.38                           | 86.00                             |
| 3  | 0.30                               | 0.12                           | 0.18                             | 0.13         | 0.054                          | 19.44                                  | 0.56                           | 79.76                             |
| 4  | 1.76                               | 0.79                           | 0.97                             | 0.063        | 0.027                          | 9.81                                   | 0.35                           | 89.64                             |
| 5  | 11.90                              | 5.33                           | 6.57                             | 0.012        | 0.011                          | 4.20                                   | 0.090                          | 95.68                             |



### Proof-of-Concept Chip- Test Structure







## Proof-of-Concept Chip- Experimental Set-Up





## Proof-of-Concept Chip- Experimental Results- Working Regions (WR's)

- Expected voltage levels (WR thresholds)- 0.25 V, 0.31 V, 0.37 V, 0.42 V
- Measured voltage levels (WR thresholds)- 0.258 V, 0.316 V, 0.40 V, 0.44 V







## Proof-of-Concept Chip- Experimental Results- Cold Start-Up

- Results with an off-chip 100 nF Ta capacitor
- Start-up power- 2.38 nW





## Proof-of-Concept Chip- Experimental Results- End-to-End Efficiency

Ci



## Proof-of-Concept Chip- State-of-the-Art Comparison

|                                                                    | Martins<br>TBCAS         | Chandrakasan<br>JSS C         | Blaauw ISSCC                        | Sinencio<br>ISS CC | Blaauw JSSC                  | This Work                |
|--------------------------------------------------------------------|--------------------------|-------------------------------|-------------------------------------|--------------------|------------------------------|--------------------------|
| Technology                                                         | standard<br>0.18 µm CMOS | 0.18 µm CMOS                  | 0.18 μm CMOS                        | 0.18 μm<br>CMOS    | 0.18 μm CMOS                 | standard<br>0.18 µm CMOS |
| Voltage boosting                                                   | charge pump              | boost with<br>voltage doubler | self-oscillating<br>voltage doubler | charge<br>pump     | discontinuous<br>charge pump | charge pump              |
| Transducer + PMU on-chip                                           | yes                      | no                            | no                                  | no                 | no                           | yes                      |
| Transducer + PMU area<br>(mm <sup>2</sup> )                        | 1.3 + 0.24               | - + 1.53                      | - + 0.86                            | - + 0.552          | - + 2.72 + off-chip<br>cap.  | 1 + 0.575                |
| Input power range (nW)                                             | -                        | 1.1 - 6.25                    | 1.7 - 12500                         | 5900 -<br>47000    | 0.02 - 1500                  | 2.38 - >10000            |
| Output power range (nW)                                            | -                        | 0.544 - 4                     | 0.5 - 5000                          | 3840 -<br>30550    | 0.005 - 600                  | 0 - 4500                 |
| Cold start-up                                                      | yes                      | no                            | yes                                 | yes                | no                           | yes                      |
| Minimum input power to<br>start-up (nW)                            | -                        | -                             | 6                                   | •                  | •                            | 2.38                     |
| МРРТ                                                               | no                       | no                            | user-operated                       | yes                | yes                          | yes                      |
| Output regulation                                                  | no                       | no                            | no                                  | yes                | no                           | no                       |
| End-to-end peak efficien <i>c</i> y<br>(%) @ P <sub>out</sub> (μW) | 67@1.27                  | 53@0.0012                     | 50@0.12                             | 72@-               | 50@0.008                     | 57@2.07                  |



## Proof-of-Concept Chip- Off-the-Shelf PMU's Comparison





Ci

|                        | Our Chip                                               | BQ25570<br>Texas Inst.<br>March 2015 | BQ25504<br>Texas Inst.<br>June 2015 |
|------------------------|--------------------------------------------------------|--------------------------------------|-------------------------------------|
| Size                   | On-chip solar cell<br>and PMU<br>< 1.6 mm <sup>2</sup> | PMU<br>3.5 mm x 3.5 mm               | PMU<br>3.5 mm x 3.5 mm              |
| Start-Up<br>current    | < 5 nA<br>(9.52 nA x 0.25 V)                           | 15 uW<br>(60.000 nA x 0.25 V)        | 15 uW<br>(60.000 nA x 0.25 V)       |
| Off-chip<br>components | No                                                     | Inductors and resistors              | Inductors and resistors             |
| Bias current           | nA                                                     | 448 nA                               | 330 nA                              |

## **Conclusions and Outlook**

- Past and on-going work
  - Device modeling and experimental characterization
  - Focal-Plane Processing, in standard CMOS technologies for conventional Computer Vision algorithms
  - Light micro-energy harvesting in standard CMOS technologies for implantable, wearable or IoT devices
- Future work- MENELAOS<sup>NT</sup> (ETN- 2020- 2023, European Funding), ENVISAGE (2019- 2021, Spanish Funding)
  - Time-of-flight sensors (standard CMOS technologies)
  - CMOS vision sensors incorporating deep learning techniques
  - Light micro-energy harvesting in standard CMOS technologies



Menelaos <sup>NT</sup> Multimodal Environmental Exploration Systems <sup>Novel Technologies</sup> <u>http://www.menelaos-nt.eu/</u>



## **Thanks for your attention!**





Ci



XUNTA

UNIÓN EUROPEA

Fondo Europeo de Desenvolvemento Rexional "Unha maneira de facer Europa"