Example of Implementation: Turbulence Meets Active Matter

Michael Wilczek Max Planck Institute for Dynamics and Self-Organization Göttingen, Germany

Turbulence

Plankton (aka Active Matter)

Turbulence Meets Active Matter

Intended Outcome: Bringing Research Experience to the Classroom

Topics:

- fluid dynamics
- turbulence theory
- soft matter physics: agent-based & continuum models
- statistical mechanics

Methods:

- theory: dynamical & complex systems
- computational aspects: programming, numerical solution of differential equations

Challenges:

- broad, multi-disciplinary range of topics
- theoretically & computationally demanding course material

Teaching Plan Implementation

Lecture:

- draw bigger picture
- motivate & define problems for student projects
- provide theoretical background

Tutorial:

- support student projects
- introduce computational methods
- group discussions of outcome of "numerical experiments"

Things I wanted to try out:

- active learning
- just-in-time teaching

•

Interactive Elements

Student Projects

- Generalized Vicsek models
- Modelling of pedestrian dynamics:
 Can you escape?
- Generalized Navier-Stokes equations as models for active flows
- Collective dynamics of force dipoles in a Stokes flow
- Active swimmers in a flow

ordinary differential equations

difficulty

partial differential equations

Getting up to Speed Vorticity, defects a long pursues ation Life at low Reynolds number ation in Lyman Laboratory, Harvard University, Cambridge, Massact (Received 12 June 1976) roswimmer suspensions Meso-sca. rich2 Germany eig und Berlin, * H. Wensinlah Novel Type of Phase Transition in a System of Self-Driven Particles amical XY Model: How Birds Fly Together Pr Tamás Vicsek, 1,2 András Czirók, 1 Eshel Ben-Jacob, 3 Inon Cohen, 3 and Ofer Shochet 3 Hunoarv oire de Tamás VIcsek, "András Czirók, Eshel Ben-Jacob," Inon Cohen, and Ofer Shocher

Institute for Technical Physics, Budapest, P.O.B. 76, 1325 Hungary ٦y; tre for own Heights, New York 10598 Oregon 97403-1274* JS013,* te, France

Coding is Fun...Isn't it?

pedestrian evacuation

Results

active particles

Final Presentations

Introduction

pedestrians

acceleration equation

DGL

$$\frac{d\mathbf{v}_i}{dt} = \frac{\mathbf{v}_i^0(t)\mathbf{e}_i^0(t) - \mathbf{v}_i(t)}{\tau_i}$$

interaction

interaction with walls

velocity difference without interactions

change of position

$$\frac{\mathrm{d}\boldsymbol{r}_i}{\mathrm{d}t}=\boldsymbol{v}_i(t)$$

 $m{v}$ velocity, $m{v}^0$ desired velocity, $m{e}$ direction, au characteristic time, m_i mass, $m{f}_{ij}$ person

Introduction Bacteria in solution show can show structured behavior:

What are we trying to model?

Collective dynamics of microswimmers in Stokes

Convergence of the field

$$\boldsymbol{u}(\mathbf{0}) = \frac{1}{8\pi\mu} \sum_{\alpha\beta\gamma} \left[\left(\frac{1}{r_{\prime}} - \frac{1}{r_{\prime\prime}} \right) \boldsymbol{I} + \frac{1}{r_{\prime\prime}^{3}} \boldsymbol{r}_{\prime\prime} \otimes \boldsymbol{r}_{\prime\prime} - \frac{1}{r_{\prime\prime}^{3}} \boldsymbol{r}_{\prime\prime\prime} \otimes \boldsymbol{r}_{\prime\prime\prime} \right] . \boldsymbol{p}^{\alpha\beta\gamma}$$

$$egin{aligned} oldsymbol{u}(\mathbf{0}) &= rac{1}{8\pi\mu} \sum_{lphaeta\gamma} \left[\left(-rac{d\cos heta}{r^{lphaeta\gamma^2}}
ight) oldsymbol{p}^{lphaeta\gamma} \left(-rac{3d\cos heta(oldsymbol{p}^{lphaeta\gamma},oldsymbol{r}^{lphaeta\gamma})}{r^{lphaeta\gamma^4}}
ight) oldsymbol{r}^{lphaeta\gamma} + rac{oldsymbol{r}^{lphaeta\gamma}}{r^{lphaeta\gamma}}
ight) oldsymbol{p}^{lphaeta\gamma}
ight. \end{aligned}$$

$$m{r'} = m{r}^{lphaeta\gamma} + rac{l}{2}m{p}^{lphaeta\gamma} \ m{r''} = m{r}^{lphaeta\gamma} - rac{l}{2}m{p}^{lphaeta\gamma}$$

Feedback (from 10 MSc, 1 BSc, 2 PhD students)

The course increased my interest in the topic.

The workload is...

"I really like the hybrid-lecture type of classes and projects"

"The project really increased my interest — very nice approach!"

"The structure of the course combined with the tutorials was very good. I learned a lot about programming, which will certainly be useful for my future studies"

Teaching Evaluation Team

Acknowledgements

Jose Agustín Arguedas-Leíva

Lukas Bentkamp

Tobias Bätge

Debarghya Banerjee

Jan Cammann

Gerrit Green

Gregor Ibbeken

Martin James

Colin Koch

Kim Kreienkamp

Cristian Lalescu

Laura Lukassen (now Univ. Oldenburg)

Leonhard A. Leppin

Niklas Schnierstein

Dominik Suchla

Birte Thiede

Dimitar Vlaykov (now Univ. Exceter)

Bundesministerium für Bildung und Forschung

