Strong gravitational radiation from a simple dark matter model

Camilo Garcia Cely, DESY

Bogotá-Colombia CoCo (Cosmología en Colombia)

31 May, 2019

In collaboration with Iason Baldes Based on JHEP 1905 (2019) 190

• Predicted by Poincaré (1905).

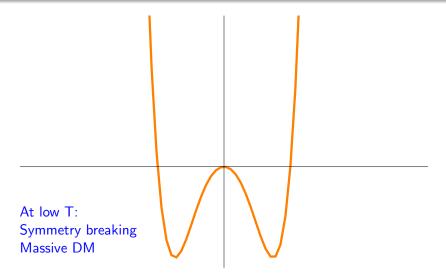
- Predicted by Poincaré (1905).
- Einstein provided a firm theoretical ground for them (1916).

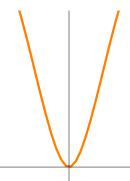
$$\Box h_{\mu\nu} = -16\pi G T_{\mu\nu}$$

- Predicted by Poincaré (1905).
- Einstein provided a firm theoretical ground for them (1916).

$$\Box h_{\mu\nu} = -16\pi G T_{\mu\nu}$$

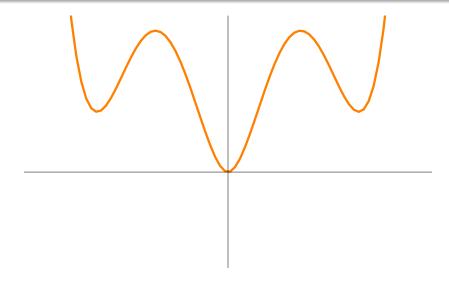
 First-order phase transitions in the Early Universe produce GWs. Witten (1984).

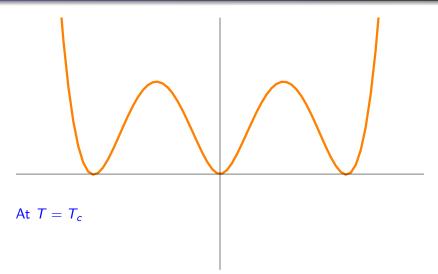


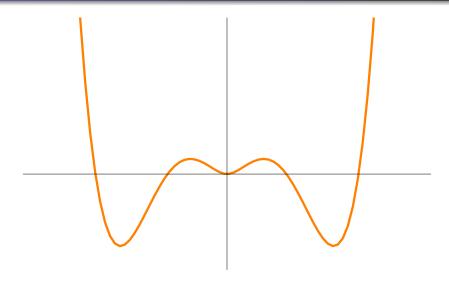

- Predicted by Poincaré (1905).
- Einstein provided a firm theoretical ground for them (1916).

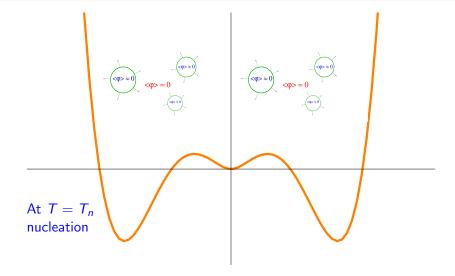
$$\Box h_{\mu\nu} = -16\pi G T_{\mu\nu}$$

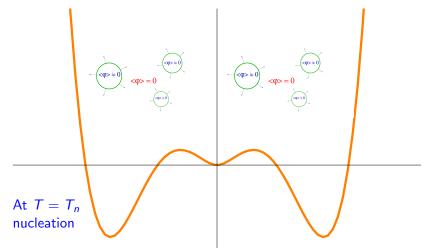
 First-order phase transitions in the Early Universe produce GWs. Witten (1984).

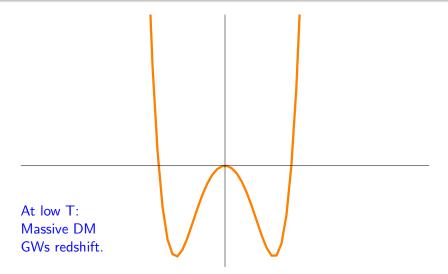

- Hypothesis: Dark matter are massive gauge bosons.
 - →There was a phase transition in the Early Universe: GWs.

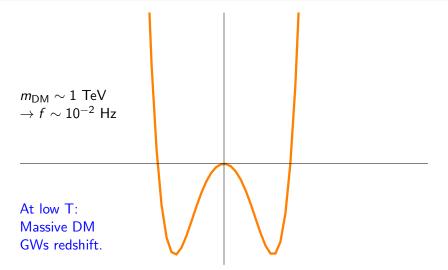


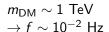


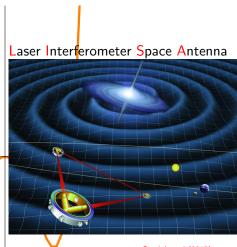

At high T: Symmetry restoration


Kirzhnits and Linde (1972)






This produces produces gravitational waves E. Witten (1984)



GWs from symmetry breaking at tree level GWs from radiatively-induced symmetry breaking

First-order phase transition

At low T: Massive DM GWs redshift.

Caprini et al (2015)

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	Ō	2

$$V = \mu_1^2 H^\dagger H + \mu_2^2 H_D^\dagger H_D + \lambda_1 (H^\dagger H)^2 + \lambda_2 (H_D^\dagger H_D)^2 + \lambda_3 H_D^\dagger H_D H^\dagger H ,$$

Local
$$SU(2)_D$$
 \rightarrow Global $SO(3)$
Gauge Fields A'_{μ} \rightarrow Massive Fields A_{μ}
Dark doublet H_D \rightarrow Higgs-like h_D

Hambye (JHEP 2009)

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	Ō	2

$$V = \mu_1^2 H^{\dagger} H + \mu_2^2 H_D^{\dagger} H_D + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (H_D^{\dagger} H_D)^2 + \lambda_3 H_D^{\dagger} H_D H^{\dagger} H,$$

```
Local SU(2)_D \rightarrow Global SO(3)

Gauge Fields A'_\mu \rightarrow Massive Fields A_\mu Stable (DM Candidate)

Dark doublet H_D \rightarrow Higgs-like h_D
```

Hambye (JHEP 2009)

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	Ō	2

$$V = \mu_1^2 H^{\dagger} H + \mu_2^2 H_D^{\dagger} H_D + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (H_D^{\dagger} H_D)^2 + \lambda_3 H_D^{\dagger} H_D H^{\dagger} H,$$

Local
$$SU(2)_D$$
 \rightarrow Global $SO(3)$
Gauge Fields A'_{μ} \rightarrow Massive Fields A_{μ} Stable (DM Candidate)
Dark doublet H_D \rightarrow Higgs-like h_D It mixes with the Higgs

Hambye (JHEP 2009)

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	Ō	2

$$V = \mu_1^2 H^\dagger H + \mu_2^2 H_D^\dagger H_D + \lambda_1 (H^\dagger H)^2 + \lambda_2 (H_D^\dagger H_D)^2 + \lambda_3 H_D^\dagger H_D H^\dagger H ,$$

High temperatures

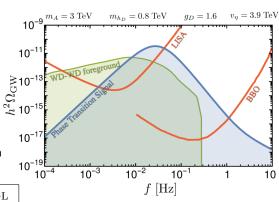
Stable (DM Candidate) It mixes with the Higgs

Hambye (JHEP 2009) Phase transition in the Early Universe!!!!!!!!!

Four parameters

- DM mass
- Higgs-like mass
- mixing angle. Direct detection in Xenon1T: $\theta \lesssim 0.1$.
- vev (or g_D) are set by the relic density (via freeze-out):

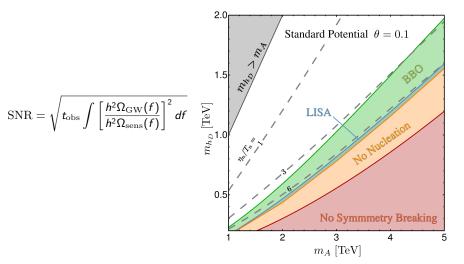
$$\begin{cases} g_D \approx 0.9 \times \sqrt{\frac{m_A}{1 \text{ TeV}}} \\ v_{\eta} \approx 2.2 \text{ TeV} \times \sqrt{\frac{m_A}{1 \text{ TeV}}}. \end{cases}$$


GW spectrum

Phase transition parameters

$$T_n = 0.48 \, \mathrm{TeV}$$

 $\eta_n = 3.8 \, \mathrm{TeV}$
 $\alpha = 0.29, \, \sim \! (\mathrm{latent\ heat})$
 $\beta/H = 290 \, \sim \! (\mathrm{fq.\ scale})$


Simulations give Ω_{GW} from them Caprini et al (2015)

	SNR	$\mathrm{SNR}_{\mathrm{FGL}}$
LISA	15	1.8
BBO	3.7×10^{5}	2.3×10^{3}

Baldes, CGC 2018

Parameter space for SNR>5.

Dark matter as massive dark gauge bosons

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	0	2

$$V = \mu_1^2 H^\dagger H + \mu_2^2 H_D^\dagger H_D + \lambda_1 (H^\dagger H)^2 + \lambda_2 (H_D^\dagger H_D)^2 + \lambda_3 H_D^\dagger H_D H^\dagger H ,$$

$$Local SU(2)_D \rightarrow Global SO(3)$$

$$Gauge Fields A'_\mu \rightarrow Massive Fields A_\mu$$

$$Dark doublet H_D \rightarrow Higgs-like h_D$$

Dark matter as massive dark gauge bosons

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	Ō	2

Set them to zero (Classically scale invariant potential) Hambye, Strumia, Teresi (2013, 2018)

$$V = \mu_1^2 H^{\dagger} H + \mu_2^2 H_D^{\dagger} H_D + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (H_D^{\dagger} H_D)^2 + \lambda_3 H_D^{\dagger} H_D H^{\dagger} H,$$

 $\begin{array}{ccc} \mathsf{Local} \ \mathcal{S} \mathcal{U}(2)_D & \to & \mathsf{Global} \ \mathcal{S} \mathcal{O}(3) \\ \mathsf{Gauge} \ \mathsf{Fields} \ \mathcal{A}'_\mu & \to & \mathsf{Massive} \ \mathsf{Fields} \ \mathcal{A}_\mu \end{array}$

Dark doublet $\dot{H}_D \rightarrow \text{Higgs-like } h_D$

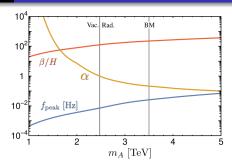
Dark matter as massive dark gauge bosons

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	Ō	2

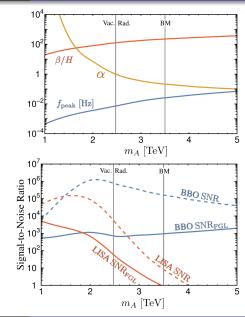
Set them to zero (Classically scale invariant potential) Hambye, Strumia, Teresi (2013, 2018)

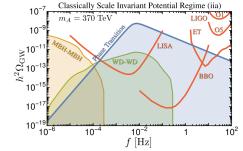
$$V = \mu_1^2 H^\dagger H + \mu_2^2 H_D^\dagger H_D + \lambda_1 (H^\dagger H)^2 + \lambda_2 (H_D^\dagger H_D)^2 + \lambda_3 H_D^\dagger H_D H^\dagger H \,,$$

$$\text{Local } SU(2)_D \qquad \rightarrow \qquad \text{Global } SO(3)$$


$$\text{Gauge Fields } A'_\mu \qquad \rightarrow \qquad \text{Massive Fields } A_\mu$$

$$\text{Dark doublet } H_D \qquad \rightarrow \qquad \text{Higgs-like } h_D$$


Radiative effects break the $SU(2)_D$ symmetry Coleman-Weinberg (1973) λ_2 runs to negative values.


- Only one free parameter after taking the relic density into account.
- Scale-invariant potential
 → strong signal.

- Only one free parameter after taking the relic density into account.
- Scale-invariant potential
 → strong signal.

- Only one free parameter after taking the relic density into account.
- Scale-invariant potential
 → strong signal.

]
I

	m_A	370	rev
Dark Sector	m_{h_D}	59	TeV
Parameters	v_{η}	780	TeV
	g_D	0.95	-
	θ	10^{-9}	-
	T_n	2.6	GeV
	$T_{infl.}$	43	TeV
Phase	$T_{\rm RH}$	13	TeV
Transition	η_n	$\simeq v_{\eta}$	-
	α	10^{16}	-
	β/H	6.7	-
	LISA	10^{4}	-
SNR	LISA(FGL)	270	-
SIVIL	BBO	10^{8}	-
	BBO(FGL)	10^{7}	-

m

TeV

10 ⁻⁷	Classically Sca	le Invariant Poter	ntial Regime	(iia)
į.	$m_A = 2000 \text{ Te}$	eV	LIGO	OI
10 ⁻⁹		,	ET	05/
$h_{\rm 20-12}^2 h_{\rm GG}^2$	MBH-MBH WD		ISA	
\mathcal{C}_{0}^{2} 10 ⁻¹³			Transition	
10 ⁻¹⁵			BB	0
10 ⁻¹⁷			4	
10 ⁻¹⁹				
10 10	⁻⁶ 10 ⁻⁴	10 ⁻²	1	10 ²
		f [Hz]		

	m_A	2000	TeV
Dark Sector	m_{h_D}	330	TeV
Parameters	v_{η}	4100	TeV
	g_D	0.98	-
	θ	10^{-11}	-
	T_n	32	GeV
	$T_{\text{infl.}}$	230	TeV
Phase	T_{RH}	1.0	TeV
Transition	η_n	$\simeq v_{\eta}$	-
	α	10^{15}	-
	β/H	7.1	-
	LISA	44	-
SNR	LISA(FGL)	1.0	-
DIVID	BBO	10^{5}	-
	BBO(FGL)	10^{5}	-

Conclusions

- We have explored the possibility of DM from a hidden $SU(2)_D$ gauge group. This implies a phase transition that will result in detectable gravitational waves.
 - The model is therefore well suited as a case study for the sensitivity of future gravitational wave observatories to phase transitions in DM sectors.

Conclusions

- We have explored the possibility of DM from a hidden $SU(2)_D$ gauge group. This implies a phase transition that will result in detectable gravitational waves.
- The model is therefore well suited as a case study for the sensitivity of future gravitational wave observatories to phase transitions in DM sectors.

Thanks for your attention